
University of Central Florida

Senior Design I
Final Report

DeepGate Speech Recognition System

Group 3:
Lindsay Davis
Estella Gong
Michael Lopez-Brau
Cedric Orban

Sponsors:
SoarTech

Supervisor:
Dr. Lei Wei

Associate Professor
Department of Electrical and

Computer Engineering

Submitted April 27, 2017

Contents
1 Executive Summary 1

2 Project Description 3
2.1 Project Motivation . 3

2.2 Goals and Objectives . 4

2.3 Specifications . 5

2.4 System Block Diagram . 6

2.5 House of Quality Analysis . 7

3 Research Related to Project Definition 9
3.1 Existing Similar Projects and Products 9

3.1.1 FAIR’s Wav2Letter . 9

3.1.2 Microsoft Catapult . 9

3.1.3 Hardware-Accelerated Neural Network 10

3.2 Relevant Technologies . 10

3.2.1 Digital Systems . 10

3.2.1.1 Combinational and Sequential Logic 11

3.2.1.2 Synchronous and Asynchronous Sequential Logic . 11

3.2.1.3 Digital Circuit Timing 12

3.2.1.4 Hardware Description Language 15

3.2.2 Field-Programmable Gate Array 15

3.2.2.1 Logic Blocks . 16

3.2.2.2 Hard Blocks . 18

3.2.2.3 Routing . 18

3.2.2.4 Phase-Locked Loop 20

3.2.2.5 Xilinx Spartan-6 Family 21

3.2.2.5.1 Spartan-6 XC6SLX9-3TQG144 21

3.2.3 Communications and Ports 22

3.2.3.1 JTAG . 22

3.2.3.2 UART . 23

3.2.3.3 RS232 . 24

i

3.2.3.4 I2C . 25

3.2.3.5 SPI . 27

3.2.3.6 USB . 27

3.2.3.7 Communications and Ports Summary 27

3.2.4 SDRAM . 28

3.2.5 PCB . 31

3.2.5.1 Modern PCB . 31

3.2.5.2 Through-Hole Packaging 31

3.2.5.3 Surface-Mount Packaging 32

3.2.5.4 Thermal Considerations 33

3.2.5.5 Layering . 34

3.2.6 Software . 34

3.2.6.1 Speech Data Pre-processing 34

3.2.6.1.1 Raw Waveform 35

3.2.6.1.2 Power Spectrum 36

3.2.6.1.3 MFCC . 36

3.2.6.2 Speech Recognition Algorithims 43

3.2.6.2.1 Hidden Markov Models 43

3.2.6.2.2 Neural Networks 47

3.2.6.2.3 Convolutional Neural Networks 52

3.2.6.3 Programming Languages 54

3.2.6.3.1 C/C++ . 54

3.2.6.3.2 Lucid . 55

3.2.6.3.3 Verilog . 56

3.2.6.3.4 Python . 56

3.2.6.4 Graphical User Interface 57

3.2.6.4.1 Visual Studio 57

3.2.6.4.2 QT . 57

3.2.6.5 Xilinx ISE Design Suite 14.7 57

4 Related Standards and Design Constraints 59
4.1 PCB Standards . 59

ii

4.2 FPGA Constraints . 59

4.3 Algorithmic Constraints . 61

5 Firmware, Hardware, and Software Design Details 62
5.1 Firmware . 62

5.1.1 Firmware Introduction . 62

5.1.2 Firmware Architecture . 62

5.1.2.1 Processing Unit . 64

5.1.2.2 Combinational Approximation of the Sigmoid Func-
tion . 66

5.1.2.3 Tile Data Path Structure 68

5.1.2.4 Tile Control Structure 70

5.1.2.5 Tile Pipeline . 72

5.1.2.6 Weight Distribution 74

5.1.2.7 SPI Slave . 76

5.1.2.8 Clock . 77

5.1.3 Automatic Include File Generation 77

5.1.4 Physical Pinout . 78

5.2 Hardware . 78

5.2.1 PCB Design Overview . 78

5.2.2 Schematics . 79

5.2.3 Board Layout . 84

5.2.4 Components and Power . 86

5.2.4.1 PCB Fabrication . 86

5.2.4.2 FPGA . 86

5.2.4.3 SDRAM . 87

5.2.4.4 JTAG . 88

5.2.4.5 LED . 92

5.2.4.6 RESET Button . 94

5.2.4.7 Resistor Network 96

5.2.4.7.1 Current Limiting Resistors 100

5.2.4.8 Power Supply . 101

iii

5.2.4.9 Voltage Levels and Regulators 103

5.3 Software . 104

5.3.1 Speech Recognition . 105

5.3.1.1 Algorithm Choice 105

5.3.1.2 Dataset & Preprocessing 105

5.3.1.3 Classifier . 106

5.3.2 Graphical User Interface Design 107

5.3.2.1 Functional Requirements 107

5.3.2.2 Block Diagram/State Machine 107

6 System Design Summaries 109
6.1 Hardware Design Summary . 109

6.2 Software Design Summary . 109

6.2.1 Establishing Serial Communication 110

6.2.2 Memory Mapping . 110

6.2.3 Interfacing via JTAG . 111

6.2.4 Receiving Algorithm Feedback 111

6.2.5 Speech Validation and Recognition 111

6.2.6 Status/Log Tracking . 112

6.2.7 User Interface Design . 112

7 Project Prototype Construction 114
7.1 Part Selection and Acquisition . 114

7.2 PCB Vendor and Assembly . 114

7.3 PCB Prototype Construction . 114

7.4 Facilities and Equipment . 115

8 Project Development Board Testing 117
8.1 Hardware . 117

8.1.1 Design . 117

8.2 Breadboard Prototype . 117

8.2.1 Breadboard Design . 117

8.2.2 Breadboard Testing . 119

iv

8.2.3 Experimental Setup . 119

8.3 Firmware Testing Environment . 122

8.3.1 ModelSim . 122

8.3.1.1 Main Testbench . 123

8.3.2 Development Boards . 123

8.3.2.1 Embedded Micro Mojo V3 123

8.3.2.2 Embedded Micro SDRAM Shield 124

8.3.3 RealTerm . 124

8.4 Software Testing Environment . 125

8.4.1 Anaconda . 125

8.4.2 Qt Creator . 125

8.5 Software-Specific Testing . 125

8.5.1 Integer Recognition . 126

8.5.2 Cardinal Direction Recognition 126

8.5.3 Status Logging . 126

8.5.4 User-Friendliness . 127

9 Administrative Content 128
9.1 Time Management . 128

9.2 Finances . 128

9.2.1 Overview . 128

9.2.2 Budget . 129

9.2.2.1 PCB Bill of Materials 129

9.2.2.2 Total Budget Breakdown 130

9.2.3 Sponsor . 131

9.3 Team Composition . 131

9.4 Project Operation . 132

9.4.1 GUI Operation . 132

9.5 Milestones . 136

10 Project Summary 138
10.1 Project Design Discussion . 138

v

10.2 Technical and Administrative Challenges 138

10.3 Project Scheduling Update . 138

10.4 Best Practices . 140

A Copyright Permissions 142

B References 149

vi

List of Figures
1 System Block Diagram . 6

2 DeepGate House of Quality . 7

3 Positive Edged D Flip-Flop - Permission for Reprinting Obtained
from Wikipedia (Image Available in the Public Domain) 11

4 Positive Edged D Flip-Flop Timing Characteristics - Permission for
Reprinting Obtained from the Macao Museum of Communications . 12

5 Setup Time Waveform Diagram - Permission from Elsevier for
Reprinting Pending . 13

6 Hold Time Waveform Diagram - Permission from Elsevier for Reprint-
ing Pending . 14

7 Typical Field-Programmable Gate-Array Logic Cell - Permission for
Reprinting Obtained from Wikipedia (Image Available in the Public
Domain) . 16

8 SRAM-based Look-Up Table Internals- Permission for Reprinting
Obtained from Altera . 17

9 FPGA Routing Architecture . 19

10 Routing Interconnect Switchbox - Permission for Reprinting Ob-
tained from Wikipedia (Image Available under GFDL License) 19

11 JTAG 2 pin Interface - Permission for Reprinting from CC 2.5 23

12 JTAG 4 pin Interface - Permission for Reprinting from CC 3.0 23

13 Simplified UART interface - Permission for Reprinting from Sparkfun 23

14 RS232 Pinout . 24

15 I2C Bus Interface - Permission for Reprinting Granted by maxEm-
bedded (Available under Creative Commons 3.0 26

16 SDRAM State Flow Diagram - Permission for Reprinting from Em-
bedded Micro . 30

17 Surface Mount vs. Through-Hole - Image Available in the Public
Domain . 33

18 PCB Layers . 34

19 Speech Signal in the Time Domain 35

20 Power Spectral Density of the Speech Signal 36

21 Speech Signal With and Without Pre-emphasis 38

22 Generalized Hamming Window . 39

23 Effects of Hamming Windowing in the Time Domain 40

vii

24 Effects of Hamming Windowing in the Frequency Domain 40

25 Mel-scale Filterbank with 26 Filters 41

26 Effects of Mel-scale Filters on Signal 42

27 Discrete-Time Markov Chain of the Weather - Permission for Reprint-
ing Pending . 45

28 Image from the MNIST Dataset with Increasing Noise 47

29 Example of a Neural Network (Permission Granted by Andrej Karpa-
thy) . 48

30 Sigmoid Function . 49

31 Function Minimization using Gradient Descent (Permission Pending) 50

32 Locally-Connected Neural Network (Image Available in Public Do-
main) . 53

33 Example of an Convolutional Neural Network (Permission Granted
by Andrej Karpathy) . 53

34 Processing Unit Depicted at the Register-Transfer Level 65

35 Logic Required to Implement Sigmoid Function 67

36 Simplified Tile Architecture . 70

37 Tile Control Finite State Machine Diagram 72

38 DeepGate Digital Architecture Overview 74

39 Example Weight Arrangement Scheme in Memory 75

40 PCB Block Diagram . 79

41 PCB Schematic . 80

42 PCB Voltage Regulators . 81

43 PCB Schematic Page 3 . 82

44 PCB Schematic Page 4 . 83

45 Layout and Components . 84

46 Layout Ground Layer . 85

47 Layout Power Layer . 85

48 Fabricated Board Front . 86

49 FPGA Component Specification Comparisons for Part Selection . . 87

50 SDRAM Component Specification Comparisons for Part Selection . 88

51 JTAG Component Specification Comparisons for Part Selection . . . 89

52 JTAG-SMT2 Component Board Top 89

viii

53 JTAG-SMT2 Component Board Bottom 89

54 TAP Controller’s Finite 16-State Machine Transitions - Permission
Pending From Diligent for Picture Use 91

55 LED Component Specification Comparisons for Part Selection . . . 93

56 Reset Button Open with Pull-Up Resistor 94

57 Reset Switch Open Circuit . 94

58 Reset Switch Closed Circuit . 95

59 Reset Button Component Specification Comparisons for Part Se-
lection . 95

60 Resistor Network Internal Schematic 96

61 Resistor Network Component Specification Comparisons for Part
Selection . 99

62 Component Supply Voltage and Maximum Current Specifications . . 101

63 Power Supply Adapter Specification Comparisons for Part Selection 102

64 Power Barrel Connector Specification Comparisons for Part Selection102

65 Voltage Regulator Component Specification Comparisons for Part
Selection . 104

66 GUI State Machine Block Diagram 108

67 Breadboard Block Diagram . 117

68 Breadboard Schematic . 118

69 RealTerm Development Board Testing Program 120

70 Breadboard Test Set Up . 121

71 Application Responsibility Breakdown Diagram 128

72 Bill of Materials for PCB Prototype Rev0 130

73 Costs Summary . 130

74 Graphical User Interface . 132

75 View Status . 133

76 Input Controls . 133

77 Neural Network Controls . 134

78 FPGA Controls . 134

79 Save Status/Logging . 135

80 Accuracy Meter . 135

81 Edit Parameters . 136

ix

82 Milestones . 137

83 Senior Design 1 Final Schedule . 139

84 Senior Design 2 Proposed Schedule 140

x

List of Tables
1 DeepGate Objectives . 4

xi

1 Executive Summary
People have the remarkable capability of being able to make vast inferences about
the world with little information, as well as being able to communicate the infor-
mation gained from these inferences to others. How are humans able to effec-
tively use language, an unfathomably flexible and loose communication tool, to
exchange and develop ideas? Is it possible to train machines to communicate or at
least understand the vagueness of natural language? These questions and many
like them have piqued the interest of many linguists, computer scientists, and engi-
neers, leading to research thrusts in computational linguistics and natural language
processing.

At the intersection of computational linguistics and natural language processing,
a variety of algorithms have been developed in the search to find the best one
for speech recognition. Recent advances in hardware have caused a resurgence
of development in deep neural network modeling, now commonly known as deep
learning. In the past, neural network models with many hidden layers were un-
feasible due to their computational complexity but now many of the most common
deep learning algorithms can be run on a middle-to-high end laptop. Deep learning
approaches have become very popular as of late due to their ability to dominate
other machine learning algorithms on almost every benchmark. We have noticed
that these algorithms also perform exceptionally well in the language domain, par-
ticularly in speech recognition.

Speech recognition systems generally deal with several important steps, namely:
data acquisition and pre-processing, recognition/decoding, and application inter-
face (e.g. moving a prosthetic arm). Conventional speech recognition systems
extract expert features in their pre-processing step and use some variant of hid-
den Markov models as their speech recognizer/decoder. With the popularity and
success of deep learning, we utilize a deep learning framework with the goal of
learning the best features for speech recognition, instead of hand-crafting expert
ones. We designed a system that mirrors current research thrusts by implementing
this algorithm on an FPGA chip. FPGA chips have the advantage of being signifi-
cantly cheaper than ASIC variants for small-scale applications. They also have the
ability to run a neural network faster than a CPU and with less power consumption
than a GPU.

In this project, we focus on the design and application of DeepGate, a speech
recognition system that is affordable, energy-efficient, low-cost, and portable while
being able to maintain the computational sophistication needed for keeping the
word error rates as low as possible. Implementing DeepGate on a low-cost FPGA
allows us to meet these efficiency benchmarks while the deep learning framework
allows us to achieve a reasonably low word error rate. DeepGate has a small
vocabulary of 14 pre-registered words, corresponding to the numbers 0-9 and the
cardinal directions: north, south, east, and west. The speech signal will first be
pre-processed by a desktop or laptop computer before sending the pre-processed
data over to the FPGA. The FPGA will perform the classification task and one of the

1

14 LEDs corresponding to our 14 words will illuminate. The FPGA will also send
the classification results back to a GUI. We developed a GUI for interfacing with
DeepGate that displays the speech converted to text and 14 buttons to simulate
the LEDs on the FPGA PCB. Generally, our motivation for this project stems from
its interdisciplinary nature. Speech recognition technologies often employ tools
from a myriad of disciplinary areas. Among them are computer hardware, linear
algebra, signal processing, and machine learning.

2

2 Project Description
2.1 Project Motivation
It is clear that the future of the field-programmable gate-array has only begun to
unravel. This is evidenced by Intel’s recent acquisition of Altera and the reports of
Microsoft using FPGAs to accelerate their search engine and server infrastructure.
Furthermore, researchers across the world have begun exploring the possibility of
adapting machine learning algorithms to programmable logic devices, increasing
throughput and lowering power consumption relative to CPU-based implementa-
tions of the same algorithms. These trends, coupled with the recent unveiling of
Google’s tensor processing unit (a specially designed integrated circuit optimized
for machine learning) have inspired us to create our own FPGA-accelerated deep
learning system. By coupling our knowledge of digital systems design, machine
learning, software development, and printed circuit boards, we aim to implement a
fully functional speech recognition tool using an FPGA-based neural network algo-
rithm.

The end-result of this project is likely not commercially viable. There exist many
speech recognition systems that utilize machine learning and have a state-of-the-
art accuracy level and latency. Nonetheless, we aim to achieve the highest pos-
sible through-put and accuracy possible, showcasing the capabilities of FPGAs as
power-efficient compute engines in the process. In this way, the project serves
more as a proof-of-concept than anything else. We believe our project has the op-
portunity to be more interesting than the microcontroller/custom PCB designs that
are more typical in senior design. Although taking digital design and computer ar-
chitecture courses is necessary to graduate from the college, rarely do the senior
design instructors push students to apply the concepts learned in these classes to
FPGAs or purpose-built PCIe cards.

Additionally, this is a capstone project required by the University of Central Florida’s
College of Engineering and Computer Science and the ABET accreditation board.
In order to obtain our Bachelor of Science in Electrical Engineering/Computer En-
gineering degrees, we must show the successful application of electrical and com-
puter engineering skills in a large, group-based project. These include, but are not
limited to, soldering, printed circuit board design, circuit prototyping, digital design,
FPGA programming, algorithmic design, and software engineering. We believe the
scope of our project encompasses all the of the aforementioned skills while simul-
taneously allowing us to exercise engineering judgement, showcase our ability to
collaborate as team members, and utilize our technical writing skills. Moreover,
the project requires us to produce something within design, financial, and ethical
constraints, pushing us to further our knowledge.

Our group consists of three electrical engineering students and one computer engi-
neering student. After careful deliberation, we decided to go with a USB-peripheral
PCB containing an FPGA (similar to an FPGA development board). This system
allows us to integrate the concepts we find most important or useful for future em-

3

ployment while allowing all of us to contribute individually in a meaningful way.

2.2 Goals and Objectives

Table 1: DeepGate Objectives
Objective Area Priority
Process speech audio data fast enough for real-time
recognition.

O High

Implement the deep neural network algorithm on a
low-cost FPGA (<$100).

FW High

Store weights using on-chip block RAM only. FW Low

Implement a serial communication protocol with a
high data transfer rate.

SW/FW Medium

Keep printed circuit board’s power consumption un-
der 10 W.

HW Low

Develop a highly flexible digital architecture that al-
lows for quick neural network modification.

FW High

Implement design on a printed circuit board with an
area less than 8 inches squared.

HW Medium

Keep circuit board layer count less than or equal to 4. HW Medium

Implement GUI to allow for testing Integer and Cardi-
nal Direction speech recognition

SW High

Implement Status Logging for GUI feedback SW Low

Regular weekly check in with members O Medium

Regular one-on-one meetings with each member O Medium

Biweekly schedule review and update O Medium

Key:

• O - Overall goal

• HW - Hardware goal

• FW - Firmware goal

• SW - Software goal

4

2.3 Specifications
• Hardware

– PCB with dedicated memory and power supply
– PCB shall include:

* FPGA
* SDRAM
* JTAG-SMT2 Programming Chip
* LEDs
* Passive Circuit Elements (Resistors, Capacitors)
* Power Supply Circuit
* DC Power Jack
* Reset Button
* Crystal Oscillator
* RS232 Serial Port

– PCB shall be compact (< 8 inches squared surface area.)
– PCB shall consume power efficiently, under our maximum of 20 W.

• FPGA

– The FPGA shall be within our budget range ideally between 10 and 100.
– FPGA will need to process data fast enough for real-time voice recogni-
tion.

– FPGA firmware will need to be flexible enough to accommodate changes
in neural network algorithm.

– Firmware shall use both on-chip and off-chip RAM for data/weight stor-
age.

• Software

– Speech signal dataset for training the deep neural network
– Command set for when it should start
– Deep neural network shall decode the speech of at least one person per
second

– Deep neural network shall correctly decode speech signals based on
the type of hardware and size of the network. Currently we will set this
threshold at 0.5.

– Detect and filter out any background noise
– PC with microphone to analyze voice signals

5

2.4 System Block Diagram
Our project can be broken down into 4 parts:

• Acoustic input, which involves hardware (mic) and pre-processing (filtering,
maybe some DSP).

• Recognition, or decoding stage. This includes developing the DNN model
and coding it on the FPGA.

• Designing the PCB for the FPGA, mic, and any other peripherals we decide
to use, like USB ports.

• Application we decide to use the speech input on.

– Accurate display/confirmation of spoken integers
– Accurate display/confirmation of spoken directions (forward, backward,
left, right)

The figure below depicts our overall system block diagram.

Figure 1: System Block Diagram

6

2.5 House of Quality Analysis

Figure 2: DeepGate House of Quality

7

FPGA Size – The amount of logic available for use on the FPGA. Cost typically
goes up as the number of logic resources increase. This directly correlates to the
size of our neural net and whether or not signal processing will be performed on the
FPGA. Size is measured in logic blocks. These logic blocks have different names
depending on the manufacturer. Altera uses Adaptive Logic Modules (ALMs) while
Xilinx uses Configurable Logic Blocks (CLBs). The relation between cost and size
is not exactly linear. For example, a chip with 50000 CLBs goes for $300 while a
chip with 60000 CLBs could go for five times that. It depends greatly on factors like
power consumption, speed, and the chip’s thermal characteristics.

Performance – How quickly our neural network can make inferences based on
speech data. We aim for a minimum speed of 100 frames per second with our
neural network. Real-time speech recognition typically uses a 10 ms frame size,
meaning our design would be capable of decoding the speech of at least one person
per second.

Accuracy – The ability of our device to correctly decode speech signals. This
is almost directly correlated with the size of our neural network, which is in turn
correlated with the size of the FPGA we use and the amount of money we are
willing to spend on a chip. Metrics relating accuracy and FPGA size are hard to
come by, as not much research has been done on this topic. This is something that
we will update continuously as we design a neural network prototype.

PCB Dimensions – PCB size, including depth, width, and layers, are heavily cor-
related with cost. Every 2 layers added to our PCB comes with an increase in
manufacturing costs of around $200. Greater size implies greater power consump-
tion as well, as traces are longer and signals need to travel farther. Different FPGA
packages require different dimensions. For example, using a ball-grid array pack-
age would require at least 4 layers to implement on a PCBwhile a quad-flat package
would possibly let us get away with using 2 layers.

Power Consumption – FPGA vendors provide tools that allow you to estimate the
power consumption of your design. It is difficult to say what our numbers looked like
as we have not fleshed out a full prototype neural net. Typically power consumption
is linearly correlated with the clock frequency on the FPGA and the amount of logic
resources utilized. For example, using 10000 CLBs clocked at 100 MHz uses 4
times as much power as using 5000 CLBs clocked at 50 MHz.

Ease-of-Use – Ideally, the end-user will be able to specify custom convolutional
neural network parameters using our GUI interface and have the FPGA develop-
ment software generate programming files based on those parameters in less than
half-an-hour. Additionally, the neural network should be minimally dependent on
vendor-specific primitives to encourage portability across different chips.

8

3 Research Related to Project Definition
3.1 Existing Similar Projects and Products
Speech recognition systems have been around since the 1950s, where the technol-
ogy was limited to single-speaker systems. Since then, much research has been
done on the science of speech perception and production, and new algorithms have
been developed and applied to improving speech recognition systems, such as dy-
namic time warping (DTW), Hidden Markov models (HMM), and neural network
models. Our project specifically uses a deep neural network architecture known
as a deep feedforward neural network. The efficacy and shortcomings of each
algorithm are discussed in a later section.

With respect to software implementations of these algorithms, field-programmable
gate arrays (FGPA) have been rising in popularity, showing advantages over pre-
vious CPU and GPU implementations. FPGAs offer the flexibility of being repro-
grammable, something that application-specific integrated circuits (ASIC) cannot
boast. Additionally, FGPAs manage to be faster than CPU implementations while
being significantly more power-efficient than GPU implementations.

Our project takes recent developments in both deep learning and FPGAs to design
an implementation that is low-cost, power-efficient, fast, and accurate. Due to the
nature of our project, projects and products that are similar are few and far between.
With these metrics in mind, we aimed to find existing projects and products that had
some of these qualities for comparison.

3.1.1 FAIR’s Wav2Letter
The Facebook Artificial Intelligence Research (FAIR) team recently uploaded a
paper on arXiv, Wav2Letter: an End-to-End ConvNet-based Speech Recognition
System, based on an improved version of the algorithm discussed in the previous
section.

3.1.2 Microsoft Catapult
Working with FPGAs in the area of artificial intelligence is exciting and also new.
A recent Microsoft “moonshot project” known as Catapult involved expanding their
use of field programmable gate arrays (FPGAs) to enhance their Bing and Azure
products. Their system has allowed them to implement algorithms directly on to the
hardware. This was a huge success for the team as not only can it be more efficient
than intermediary software, but also highly responsive to the latest innovations in
artificial intelligence.

The inspiration for the project came from Doug Burger, Microsoft Research engi-
neer, who was looking to utilize technologies that were not afflicted by the ever
slowing improvement in silicon chips as predicted by Moore’s Law. Utilizing FP-
GAs for cloud computing is unprecedented at this scale. FPGAs are used to make
data flow faster and more efficient by using it to interface with the network and the

9

servers. There the traffic can be managed as well as communications to other
FPGAs or servers can be made.

As Derek Chiou, head of the Microsoft Azure’s Cloud Silicon Team said, “I think
a lot of people don’t know what FPGAs are capable of.” Our project can provide
inside and a glimpse into those capabilities.

3.1.3 Hardware-Accelerated Neural Network
Our design is influenced by the architecture published in ”FPGA based implemen-
tation of deep neural networks using on-chip memory only,” a paper written by
Jinhwan Park and Wonyung Sung presented at the 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing. Park and Sung make use
of the processing unit/tile scheme our system uses but leave out the majority of
the technical details concerning structural connections, data flow, and control pat-
terns. Finding their results satisfactory (character/phoneme recognition accuracy)
we make use of a 3-bit weight scheme and sig_337p sigmoid function implementa-
tion. Their design serves as a good indicator of what can feasibly be done using a
field-programmable gate array. We add to their base design by developing our ar-
chitecture from the ground-up with the goals of higher accuracy and more flexibility
in mind (while having less hardware resources at our disposal). In addition, cer-
tain assumptions had to be made about the way they performed their computation.
For instance, they did not explain if input data and intermediate/output node values
pre-sigmoid were normalized to a certain range. The major difference between our
design and theirs is that they implement a feed forward neural network where as
we aim to construct a convolutional neural network. However, the systolic array
based architecture can work well for both situations, even if some minor nuances
must be addressed.

According to their paper, an accuracy comparable to CPU and GPU-based neu-
ral network implementations was observed while experiencing a huge decrease in
power consumption moving from a GPU to an FPGA for computation.

3.2 Relevant Technologies
3.2.1 Digital Systems
Digital systems are electronic circuits that handle discrete signals (signals whose
voltages fall in discrete bands). The vast majority of digital circuits today deal with
binary signals (signals whose voltages fall into one of two voltage bands typically
called high and low, or true and false). A “true” signal has a voltage near the circuit’s
supply voltage, Vcc, and a “false” signal’s voltage holds a value nearly at ground.
Using only two voltage bands allows circuits to be built at a reduced cost while
improving reliability. It is easier to get transistors to produce two distinct voltages
near Vcc and ground then it is to get them to produce voltages in a continuous
range, especially in modern integrated circuits that contain billions of transistors.

At the most basic level of abstraction, a modern digital circuit is implemented using
MOSFETs that are arranged in such a way as to produce logic gates and flip-flops.

10

Gates can implement basic Boolean functions such as AND and OR while flip-flops
form the memory elements of the circuit (they store 1-bit at a time). Certain sets
of gates such as AND-NOT, NAND, and NOR are said to be functionally complete.
That is, using only these gates any Boolean expression can be realized. By manip-
ulating the connections between gates, logic circuits with higher-level functionality
can be created. These circuits include multiplexers, priority decoders, arithmetic
logic units, all the way up to circuits that exhibit the extreme levels of complexity
seen in modern processors. Digital systems can be categorized into two divisions
that will be explained in the following section.

3.2.1.1 Combinational and Sequential Logic
A combinational circuit is a system in which the current output is solely dependent
on the present inputs. These circuits are used to perform Boolean algebra. Exam-
ples of combinational circuits include arithmetic logic units, multiplexers, and the
sig_337p circuit we use for our neural network. This class of logic can be con-
trasted with sequential systems, where the output of the circuit depends not just
on the present inputs but on previous inputs as well. In other words, sequential
logic has memory usually implemented using flip-flops that stores the state of the
system. Sequential logic can be employed to create finite state machines and reg-
isters. An example of a finite state machine is an SDRAM memory controller or the
tile control circuit used in the hardware implementation of our convolutional neural
network. Virtually all digital systems in use today are composed of at least some
sequential logic. Furthermore, sequential logic can be broken down into two sub-
categories, synchronous and asynchronous logic.

3.2.1.2 Synchronous and Asynchronous Sequential Logic
Synchronous sequential logic uses an oscillator called a clock to synchronize changes
in outputs among all the flip-flops that constitute the circuit. These changes typi-
cally occur during clock transitions. That is, a flip-flop (Figure 3) reads and stores
the value at its input, D, only at the moment in time that the clock transitions from
low to high.

Figure 3: Positive Edged D Flip-Flop - Permission for Reprinting Obtained from
Wikipedia (Image Available in the Public Domain)

After some short time, the values Q and Q‘ will update to accurately reflect the
input value at the clock transition. The port with the arrow on the flip-flop denotes

11

where the clock signal is connected to. Furthermore, an arrow pointing into the
flip-flop denotes that it reads the input on positive clock transitions (low to high). An
arrow pointing the opposite direction would imply sampling occurs during negative
clock transitions. The S and R ports exist to allow setting and resetting the flip-flop
independent of the other inputs. Ideal D flip-flop functionality is shown in Figure 4.

Figure 4: Positive Edged D Flip-Flop Timing Characteristics - Permission for
Reprinting Obtained from the Macao Museum of Communications

Asynchronous logic does not require the use of a clock. Outputs change directly in
response to changes in inputs. Flip-flops are not used in this case and memory is
implemented using level sensitive latches. The advantage of using asynchronous
logic is that it pushes a design to be as fast as physically possible (execution speed
is limited by the propagation delays of logic gates, not the frequency of a clock).
Even with this major advantage, the overwhelming majority of digital circuits in use
today employ synchronous logic to reduce complexity and timing variability. FP-
GAs are capable of implementing both synchronous and asynchronous sequential
logic, but are designed with synchronous logic usage in mind. They have an abun-
dance of flip-flops, clock trees, and PLLs that make synchronous logic usage more
favorable.

3.2.1.3 Digital Circuit Timing
Ideal flip-flops sample their inputs at the exact moment in time a clock transition
occurs. In practice, however, the input signal must remain constant for a certain
amount of time before the clock edge, called the setup time, and a certain amount
of time after the clock edge, called the hold time. If setup time or hold time is
violated, the flip-flop could be forced into a metastable state, where its output is
unpredictable for an indeterminate amount of time.

To avoid setup time violations, signals must be given ample time to travel from reg-
ister to register. Maximum propagation delay between flip-flops is dependent on
the amount of combinational logic present. If it takes too long for a signal to travel
through a combinational circuit, the input to the following flip-flop will not be stable

12

for a long enough time to avoid meta-stability. Setup time violations can be cor-
rected by reducing the frequency of the circuit’s clock or performing combinational
calculations over several clock cycles. Setup time constraints are depicted in Fig-
ure 5, where R1 and R2 are registers (made up of flip-flops) and CL is short for
combinational logic.

Figure 5: Setup Time Waveform Diagram - Permission from Elsevier for Reprint-
ing Pending

The following equations 1 and 2 must be satisfied to avoid setup time violations:

Tc ≥ tpcq + tpd + tsetup (1)

tpd ≤ Tc − (tpcq + tsetup) (2)

Where tpcq is the amount of time after the clock edge necessary for the output to
become fully-stable, tpd is the maximum propagation delay through the combina-
tional logic (some combinational paths are longer than others), Tc is the period of
the system clock, and tsetup is the required flip-flop setup time.

Hold time violations occur when signals propagate too quickly from flip-flop to flip-
flop. In this case, the signal does not maintain its value for long enough after the
clock edge. Figure 6 below depicts hold time constraints.

13

Figure 6: Hold Time Waveform Diagram - Permission from Elsevier for Reprinting
Pending

In the figure above, thold is the flip-flop minimum hold time, tccq is the time after
the clock edge when the output of the flip-flop begins changing, and tcd is the delay
of the shortest combinational path. Equations 3 and 4 must be satisfied to avoid
hold time violations:

thold < tccq + tcd (3)

tcd > thold − tccq (4)

Hold time closure cannot be achieved by modifying the clock. The minimum combi-
national delay must be increased in this case (assuming the physical characteristics
of the flip-flops cannot be modified).

Timing closure is a significant factor in FPGA development. If timing is not met, the
system can and will exhibit unexpected behavior. Fortunately, tools exist that can
help diagnose where setup and hold time violations will occur, and the designer
can take appropriate steps to minimize them. Setup time violations are common
when developing a circuit for an FPGA and can be dealt with by inserting regis-
ters between combinational logic or decreasing the frequency of the system clock.
Additionally, place and route tools can be instructed to run as long as they need
to find a configuration that meets timing specifications. Hold time violations are
a lot less common in FPGA programming as compilation tools can remove them
automatically by inserting buffer logic between registers.

In the following sections, several timing characteristics such as Fmax, themaximum
clock frequency allowable for a design (dependent on maximum combinational de-
lay), will be used to describe the FPGA-specific constraints placed on our neural
network.

14

3.2.1.4 Hardware Description Language
The place and route process must have a register-transfer level netlist as input
in order to work correctly. There are several different ways of generating netlists,
including using hardware-description languages (HDLs), high-level synthesis tools,
and even schematic diagrams. Schematic diagrams were phased out years ago
by Xilinx, leaving us with a choice between using an HDL or high-level synthesis
tool.

These behavioral or algorithmic synthesis tools can take a description of the func-
tionality of the circuit written in a high-level programming language like C (albeit
slightly restricted) and generate netlists automatically, saving a lot of time and
easing the development process. The downside of using this software is that it
generally produces an inefficient circuit relative to one handcrafted in a hardware-
description language. This is because there may be overhead in the data-path or
control logic, increasing the circuit’s latency and logic utilization. In certain cases,
they can generate logic that is equivalent to, or even faster than an RTL netlist de-
scribed using an HDL. We could not be sure before starting the project that this
would be the case for our design, thus to ensure our success and take advantage
of our familiarity with HDLs, we opted to make a choice between Verilog and VHDL.

While others exist, the most heavily used hardware-description languages are Ver-
ilog and VHDL. VHDL, being a product of a US Department of Defense research
program in the 1970s, is heavily used in the defense industry and government sec-
tor. It is extremely verbose and strongly typed, thus for the reasons of familiarity
and accessibility we chose to implement our design in Verilog. Verilog has C-like
syntax, simplified vector-bit operations, and is much easier to utilize for rapid proto-
typing and debugging. SystemVerilog, an extension to the Verilog-2005 standard,
would have been ideal as it is the industry standard when it comes to test benches
and circuit simulation, but Xilinx ISE does not support its compilation. Thus the
choice is largely a personal one, as all three languages can usually implement the
same hardware with very little variability in efficiency (post-synthesis at the RTL
level).

3.2.2 Field-Programmable Gate Array
Field-programmable gate arrays are integrated circuits specially designed to be
configurable post-manufacturing. Typically, their configuration is defined by a hardware-
description language. In the past, digital designers used circuit diagrams to specify
the operation of FPGAs (and ASICs) but as designs became increasingly complex
the need for higher-level algorithmic descriptions of digital circuit behavior became
more pronounced. Historically, FPGAs were a progression from programmable
read-only memory and programmable logic devices. In recent times, as their per-
formance and size have increased, they have moved from being niche products
to mainstream computational engines capable of surpassing the performance of
CPUs and GPUs at a much higher energy-efficiency.

15

3.2.2.1 Logic Blocks
The fundamental building block of an FPGA is the programmable logic block. Nev-
ertheless, these blocks can have names that vary from vendor to vendor (Xilinx
calls them configurable logic blocks and Altera calls them logic array blocks). They
are arranged in a matrix across the silicon wafer, hence the “array” in FPGA. While
the internals of these logic blocks can vary depending on the vendor as well as the
model of the chips themselves, generally they are composed of smaller logic cells
called slices (Xilinx) or adaptive logic modules (Altera). These sub-units usually
contain a look-up table, adder, flip-flop, and multiple multiplexers that allow the im-
plementation of basic combinational and sequential digital logic. Below in Figure
7 is a schematic of a typical logic cell. Clearly, the presence of the far-right multi-
plexer indicates that the cell supports the implementation of both classes of digital
systems.

Figure 7: Typical Field-Programmable Gate-Array Logic Cell - Permission for
Reprinting Obtained from Wikipedia (Image Available in the Public Domain)

Furthermore, the look-up-tables are configuredwhile the FPGA is being programmed,
thus allowing the implementation of arbitrary Boolean functions and removing the
need for dedicated logic gates. In some newer devices, FPGA manufacturers have
started incorporating LUTs with up to 6-bit inputs, improving performance while re-
ducing overall utilization of the FPGA’s limited resources. Look-up-tables are com-
posed of high-speed SRAM bits that are usually written to using an LUT-mask. This
phenomenon is depicted in Figure 8. By writing user-defined data to the “Rs,” the
LUT is configured and, in this case, becomes capable of implementing one function
with up to 4 input bits or two separate 3-bit functions. It can be inferred then that to
implement an n-bit function, the logic cell must contain 24 SRAM bits and a 2ˆ4:1
multiplexer. In practice, larger Boolean functions are computed by combining the
LUTs of several neighboring logic cells. It should be noted that these LUTs allow

16

for the creation of latches (level-sensitive memory elements). The usage of latches
is usually not recommended practice when dealing with FPGAs as it is a poor use
of resources and can lead to undesirable side-effects such as mismatch in circuit
behavior between simulation and run-time.

Figure 8: SRAM-based Look-Up Table Internals- Permission for Reprinting Ob-
tained from Altera

While it would be possible to implement a full-adder using the aforementioned LUTs,
it is faster to compute the addition (and subtraction) of binary numbers with ded-
icated transistors, improving timing and generally increasing performance while
freeing the look-up tables to implement arbitrary functions. That being said, some
manufacturers choose to forego including full-adders at all in their logic blocks, opt-
ing to instead implement arithmetic operations using LUT masks. In FPGAs with
adders, connecting the carry-in and carry-out bits of the full-adders present in sev-
eral logic cells allows an n-bit adder to be realized.

One of the most important components of a logic cell is the flip-flop, which forms the
basic memory element of a digital circuit and allows for the creation of sequential
logic (finite state machines, pipelines, etc.). Similar to the full-adder, placing flip-
flops in parallel can generate registers with arbitrary widths. If combinational logic
is desired, the FPGA programming software will configure the final multiplexer so
that the output is dependent only on some combination of the full-adder output and
the output(s) of the look-up table(s).

Logic blocks use their constituent logic cells to form carry chains, arithmetic chains,
and register chains through the application of local interconnect routing. This local

17

interconnect facilitates the transfer of signals between logic cells in the same block,
allowing digital designers to create complicated logic from basic digital entities.

As a side note, modern FPGAs have much more advanced control logic than that
shown in Figure 7. For example, Altera’s LABs are capable of routing up to 3 clocks,
3 clock enables, 2 asynchronous clears, 1 synchronous clear, and 1 synchronous
load signal to their logic cells. Furthermore, the software that performs place and
route is smart enough to place associated signals in the same logic block, improving
the circuit’s timing.

3.2.2.2 Hard Blocks
In addition to logic blocks, modern FPGAs have certain capabilities given to them
during manufacturing that extend their functionality and improve the performance
of common digital functions. These are termed hard blocks, as they are not pro-
grammable and lie separate on the silicon die from the array of logic blocks that
are indeed, reconfigurable. Hard blocks can take on many forms. For example,
an FPGA designer might include an embedded ARM processor (as is the case
with Xilinx’s Zynq series), DSP blocks, embedded RAM/ROM, and dedicated mul-
tipliers in the FPGA. It is possible to implement the functionality of all these hard
blocks using the FPGA’s programmable fabric, but the implementations may suffer
performance-wise as there is an extra “layer” of LUTs that must be programmed to
mimic their behavior. By realizing these commonly used functions with purpose-
built transistors, ASIC-level performance is achieved and the logic block array can
be used entirely for custom computing.

3.2.2.3 Routing
Routing is the process of configuring the FPGA’s interconnect fabric so that the ap-
propriate connections are made between logic blocks, hard blocks, and the FPGA’s
general-purpose I/O (GPIO) pins. This is essential, as realization of complex circuit
behavior is not possible without heavy logic utilization.

The most common routing topology in use today is the switch-box topology, where
horizontal and vertical signal channels span the length of the FPGA between the
programmable logic blocks (Figure 9). At the corner of each logic block is a switch-
box that routes the wires. Programmable transistors at these switch-boxes allow
signals to pass to any of the other wires available at the interconnect (Figure 10).
While not visible in Figure 9, transistors are present throughout the interconnect
fabric that connect the wire segments to the various logic/hard blocks. Furthermore,
special routing is usually employed to allow direct connections between logic blocks
and to facilitate propagation of low-skew clock signals throughout the chip.

18

Figure 9: FPGA Routing Architecture

Figure 10: Routing Interconnect Switchbox - Permission for Reprinting Obtained
from Wikipedia (Image Available under GFDL License)

Routing is generally considered a very difficult problem. Hundreds of thousands of
logic blocks may need to be connected while meeting the designer’s timing spec-
ifications. Additionally, hard blocks and GPIO pins could be tasked with driving
and accepting specific signals, implying that certain logic must be constrained to
specific areas of the chip to achieve timing closure. Speaking from personal expe-
rience, for very complex designs that employ around 30000 ALMs, the place and

19

route process can take up to an hour to complete. In some cases, the process
may fail as the router either cannot fit the intended design to the FPGA or timing
specifications are impossible to meet. In these cases, it is usually possible to in-
struct the router to optimize for speed or efficiency, affecting the timing and logic
utilization of the final circuit. Our software routing options will be determined in the
final stages of the design process, when the hardware-accelerated algorithm has
been finalized and we can decide on whether we need a decrease in latency or or
more efficient utilization of logic resources (though the two go hand-in-hand for our
system).

3.2.2.4 Phase-Locked Loop
A phase-locked loop is a control system used to generate precise clock signals in
digital circuits, among other applications. This is done by creating a closed-loop
frequency-control system whose output is dependent on the difference in phase
between an input and reference clock. By adding a divide counter in the circuit’s
feedback path, a PLL can be used as a frequency synthesis tool. That is, given
a fixed oscillator input, a frequency synthesizer can generate a clock signal with a
frequency that is an arbitrary multiple of the input clock’s frequency. Furthermore,
placing multiply counters in the PLL’s reference path allows for division of the input
clock and a more fine-tuned control of the final output clock.

Due to the re-programmable nature of the FPGA, the timing characteristics of the
digital circuits it will be configured to implement are unknown during manufacturing.
Therefore, a one size fits all system clock is not very feasible. To remediate this
issue, FPGA vendors typically include one or more PLLs as a hard block on the
silicon die, allowing the end-user to clock his design at a frequency best suited
to its timing characteristics. Since these hard blocks are embedded in the silicon
die, they usually require little to no additional “soft” logic resources to implement.
Phase-locked loops are either driven by an included internal oscillator (usually with
a frequency of 50-100 MHz) or an external oscillator that is fed into the integrated
circuit through a dedicated clocking pin.

We will certainly be using a phase-locked loop to clock both our prototype and our
final system. It should allow us to maximize the speed of the digital circuit (set the
clock frequency at the highest it can go before experiencing timing violations). Cer-
tain factors must be taken into account when using a PLL. For example, our system
must wait for the PLL to become “locked” before it begins any serious computation.
A PLL lock implies the control-system has reached a steady-state and the clock will
not experience any meaningful variation in frequency or duty cycle. Failure to wait
for PLL lock can induce serious glitches as clock skew, clock jitter deviate, and
obviously, clock frequency, deviate from the values used for a pre-configuration
timing analysis. In addition to waiting for PLL lock, procedures must be put in place
should the control-system lose its lock, or experience a loss of steady-state. We
deal with loss of lock by resetting the entire system until the PLL sets its “locked”
signal high. Additionally, the system will alert the PC-side software to stop sending
data over the serial bus. Typically, loss of lock is caused by poor PCB planning,

20

thus we hope to avoid this issue all together.

3.2.2.5 Xilinx Spartan-6 Family
The Spartan-6 line of FPGAs from Xilinx is a family of chips focused on low-power,
low-cost, and low-performance applications. Indeed, they are the lowest end chips
available in the Xilinx product line. That being said, they contain several advanced
features available in higher end chips that are of great use to us. These features
include dedicated memory controller blocks, a clock management tile, and a mod-
erate quantity of block RAM. Additionally, they can be programmed using a free
version of Xilinx ISE, sparing us the trouble of getting a license for a paid version
that can cost upwards of 1000 dollars.

A memory controller block becomes important to us when we decide to move our
digital design over to our custom PCB. It relieves us of writing our own memory
controller block that will undoubtedly be slower and less efficient than one designed
by seasoned professionals and embedded in the silicon of the FPGA. Furthermore,
it is capable of supporting DDR, DDR2, and DDR3 memory standards with data
rates of up to 800 Mb/s, meaning our neural network will not be throttled by the
time it takes to access an external RAM chip.

Clock management tiles (CMTs) control the frequency of the FPGA’s internal os-
cillator while eliminating clock skew through the use of dedicated global clock net-
works. This means we can maximize the performance of our network by increasing
the phase-locked-loop (PLL) output frequency to the utmost limit (the limit being the
frequency at which flip-flop setup times are violated).

Finally, the Spartan-6 family offers chips with varying amounts of block RAM. The
lowest end chip in the line has 216 Kb of block RAM while the highest end contains
4824 Kb. The amount is not that important to us considering we will be using an ex-
ternal RAM chip to hold our data while it is not being used, but we would preferably
like to have enough to implement pipeline stage buffers and an FPGA-side weight
cache, thus improving the throughput of our network.

Arguably the most important factor in choosing the Spartan-6 FPGA family is its
low-cost and the availability of quad flat pack packaging for certain chips. Since no
one in the group has experience designing PCBs that route BGA chips, we opted
to go for a packaging type that requires less PCB layers and is less prone to error.
Furthermore, using a quad flat pack package reduces the manufacturing costs of
our PCB, allowing us the freedom to go through multiple iterations of our design if
it fails to work properly.

3.2.2.5.1 Spartan-6 XC6SLX9-3TQG144
The specific chip from the Spartan-6 family we chose to utilize for our design was the
XC6SLX9-3TQG144. Being the second-lowest tier chip in the family, the XC6SLX9
was the largest chip (in terms of available slices, logic cells, and block RAM) that
came in a quad flat pack package. The TQG144 segment in the part number refers
to the quad flat pack packaging and the -3 to the speed grade of the chip. We

21

chose the fastest speed grade of -3 because it costs only a few dollars more than
the next speed grade of -2. This chip has 2 CMTs and 576 kB of block RAM but,
unfortunately, due to the quad flat pack packaging does not support memory con-
troller blocks. This means we have to implement our own, the tradeoff being we do
not have to deal with ball grid arrays on our PCB.

3.2.3 Communications and Ports
In our project we will be working with multiple devices and will need to send informa-
tion from one to another. In order to do this, we will need be able to communicate
with different devices. There are many ways of establishing communication be-
tween unique devices and this section will cover our research of different protocols
and utilities for doing so.

3.2.3.1 JTAG
The Joint Test Action Group (JTAG) was established in the 1980s as a response to
the need for a better method of handling design and of printed circuit boards. This
association developed standards which the Institute of Electrical and Electronics
Engineers adopted. Although JTAG was designed for testing, it is primarily used
as a means of debugging embedded hardware and important as a communications
model.

As PCBs increase in the complexity of its components, the likelihood of a board
going bad is highly probable. Even one integrated circuit can have thousands of
connections which makes it near impossible to test by hand. To verify the integrity
of the board, JTAG conducts an IC boundary test. This consists of taking control
of the IC pins and by treating some pins as inputs and others outputs, JTAG can
send and verify the reception of data.

JTAG also features firmware storage. Programmers of JTAG can more efficiently
upload firmware to flash memory. Software and other information can be written
often using data bus accesses, but using JTAG interfaces on memory chips makes
the process faster and possibly more affordable.

A JTAG interface consists of two, four, or five pins. The latter two styles can be
daisy-chained under special conditions. However, the four main logic signals are
Test Data In (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock
(TCK). The final, Test Rest (TRST) is an optional connector pin. In the reduced
version, JTAG utilizes only a clock signal and a data signal known as Test Serial
Data (TMSC). While the former style can be daisy chained, the latter, in the reduced
version, is connected in a star topology. Figure and Figure illustrate both examples.
The advantages of this are that all parts of the system do not need to be powered
as in the daisy chained interface.

22

Figure 11: JTAG 2 pin Interface - Permission for Reprinting from CC 2.5

Figure 12: JTAG 4 pin Interface - Permission for Reprinting from CC 3.0

As a communications model, the aforementioned signals make up the test access
port (TAP). One or more of these are associated with each device.

Learning about JTAG is important for our project as devices such as FPGAs are
normally enabled with JTAG. JTAG gives us frameworks for testing without the need
for additional design requirements.

3.2.3.2 UART
The Universal Asynchronous Receiver/Transmitter is important in the implementa-
tion of asynchronous serial communication. It consists of an integrated circuit and
is often included in microcontrollers. It allows the computer to communicate and
exchange information with other serial devices by providing the RS-232C DTE in-
terface. It is responsible for creating the data packet with the addition of the chosen
parity bit, sync bit and transmit it through the TX serial line at a set baud rate. It
also has a receiving line, RX which is sampled at the chosen baud rate, and output
the data. The following image simplifies how the UART is configured between a
parallel and serial interface.

Figure 13: Simplified UART interface - Permission for Reprinting from Sparkfun

23

The UART will be very useful in our project as we will need to establish communi-
cation between different devices and send/receive serial data. The advantages are
that they only use two wires and does not need a clock signal. It is also widely used
and much documentation is available. The UART also features error checking by
use of the parity bit. However, there are some disadvantages in that the size of the
data frame cannot exceed 9 bits and the expected and actual baud must be within
10 percent of each other.

3.2.3.3 RS232
The RS232 is a serial interface standard that is often used to connect the FPGA
to a computer. While it has similar applications as a UART, they have clear differ-
ences. While UART is primary concerned with the transmission and receiving of
bits, RS232 is more concerned with voltage levels. A UART can help implement
the RS232 serial interface. However, while USB may be faster, RS232 is more
useful in instances where longer cables are needed. It is also more simple.

These devices have two types of classifications: Data Terminal Equipment (DTE)
and Data Circuit-Terminating Equipment (DCE) defines the location of signal trans-
mission and reception. DTE typically refers to the standard terminal or serial port
that comes with a computer. DCE, which also stands for Data Communications
Equipment refers to a device that communicates data, such as a modem. The
RS232 standard delineates the DTE classification with male connectors and the
DCE classification with female pins.

Implementation of the RS232 requires a transmitter and a receiver. They typically
use DB-9, a connector with nine pines though older machines can have twenty-
five pins. While there are many pins, the most significant pins are those that are
involved with data transmission. These would be pin 2, also known as RxD, which
receives the data, pin 3, or TxD which focuses on transmitting data, and finally, pin
5, GND, referring to ground. With three wires connecting to these pins, we can
send bit data as a time-series.

Figure 14: RS232 Pinout

24

This is accomplished through asynchronous communication. Asynchronous com-
munication differs from synchronous communication in that, the clock signal is not
associated or transmitted with the data. In this case, the timing of the data bits
needs to be communicated to the receiver. The RS232 standard describes the
process in the following manner. The communication parameters are first agreed
upon before the commencement of communication. These parameters include
speed and format between the DTE and DCE. Then, the transmitter signals a cer-
tain state. These states include idle, start, and stop. While the line is idle, the
transmitter sends a 1. To inform the receiver the start of a data byte, the transmitter
sends start, which is 0. After the 8 bits in the data byte are sent, then the transmitter
sends stop or 1 to signal the end of the byte.

There are a set of common baud values that are to be used as the speed.

The standard also outlines the specific voltage levels that refer to the data trans-
mission line and the line of signal control. Typically, a valid control signal range
is between positive or negative 5 to 15 volts depending on the common ground.
Idle would be considered along the lines of -10V. For the lines involved with trans-
mitting and receiving signals, logical one has a negative voltage and logical zero
has a positive voltage. These conditions can be referred to as mark and space
respectively.

3.2.3.4 I2C
The Inter Integrated Circuit or I2C was invented by Philips Semiconductors as an-
other protocol for serial communication. This interface utilizes two wires to connect
lower speed peripheral devices such as input/output devices, integrated circuits to
other devices such as processors and microcontrollers.

Most manufacturers of integrated circuits utilize this protocol. One of the advan-
tages of using I2C is that it allows for multiple masters and multiple slaves. The
simplification in its design also includes needing to only define upper bus speed.
The fact that it also only needs two wires to connect I2C devices with no restriction
on quantity is also very useful.

The two lines I2C has are serial clock line (SCL) and serial data line (SDA). These
lines are bidirectional and are pulled up to Vdd with resistors. This is due to the
fact that both the lines are designed with the open-drain classification. The I2C
bus allows for an unlimited number of Master nodes and Slave nodes. The Master
device generates the clock and initializes communication with the slave device.

The following figure depicts how devices may be configured on an I2C Bus.

25

Figure 15: I2C Bus Interface - Permission for Reprinting Granted by maxEmbed-
ded (Available under Creative Commons 3.0

I2C communication is essentially done through the transmission of 8 bit data. Every
I2C slave device requires an address provided by the recently Qualcomm-acquired
NXP (previously known as Philips Semiconductors). This address can be either
seven or ten bit depending on the device.

There are four states in which the I2C can be operated. They include:

1. Master Transmit

2. Master Receive

3. Slave Transmit

4. Slave Receive

I2C also involves a message protocol where each read or write begins and ends
with the following conditions: START and STOP.

At the start, the master node initializes the Start condition and provides the address
of the slave device it desires to communicate with. This Start condition can be 0 or
1 to signify where it wants to write or read from the slave device.

The slave will respond to the master with an acknowledgment bit to confirm whether
or not it is connected to the bus. After that, the master device will continue in either
Transmit or Receive mode and the slave device would follow respectively. Once all
the data is read or written, then the Stop condition is generated to allow for other
devices to use the bus.

26

3.2.3.5 SPI
Serial peripheral interface (SPI) is a serial communication protocol that is used pri-
marily in embedded systems where distances between components are small. It
makes use of a slave-master architecture, where a single master can communi-
cate with multiple slaves using slave-select signals. A basic SPI interface for both
masters and slaves has 4 signals. These are SCLK, MOSI, MISO, and SS. SCLK
is short for serial clock, which is sent from the master to the slaves to synchronize
transmission of data on the bus. Hence, SPI is a synchronous communication pro-
tocol. MOSI and MISO are acronyms for master output, slave input and master
input, slave output, respectively. These are the data lines used to transmit data on
the edges of the clock. SS is short for slave select and designates a signal used to
choose from amongst multiple slaves. Each slave has its own slave select signal,
thus the master can communicate with each slave individually if needed.

In our project we use SPI to establish communication between the ATmega32U4
microcontroller and the Spartan-6 on the prototype development board we are us-
ing. This is necessary for both FPGA configuration (programming) and for trans-
ferring neural network inputs, weights, and outputs to and from the board. In this
configuration, the microcontroller is the master and the FPGA is the slave. We are
able to achieve a data rate of only 46.1 kB/s using this method, thus for our custom
PCB we will use a dedicated USB chip interface with that allows us to increase our
data rate by a couple orders of magnitude.

3.2.3.6 USB
The Universal Serial Bus is another interface that allows peripheral to computer
communication. It is an industry standard for devices including keyboards, disk
drives, portablemedia players andmore. Digital information can also be transferred
over these ports. This connection is made when a physical port is connected with
a USB cable. There are different types of layouts depending on the device.

USB 1.x is the first standard of USB and supports up to 12 Mbps of data transfer as
well as 127 devices. USB 2.0 is capable of supporting data transfer rates of up to
480 Mbps. This is known as hi-speed USB. SuperSpeed USB or USB 3.0 improved
upon the previous versions and can transfer up to 5.0 Gbps. Most recently USB
3.1, which emerged in 2013 is the most recent version and can transfer data up to
10 GPS. It is known as SuperSpeed+.

3.2.3.7 Communications and Ports Summary
As we are interfacing with different devices, understanding and exploring the vari-
ous port types and communication protocols is extremely important.

JTAG, RS232, UART, I2C, SPI, and USB will all play roles in our project. The JTAG
is particularly useful for debugging the FPGA. The USB is one of the simplest ways
of transmitting information to a computer. As our information pathways will need
to be bidirectional, understanding how to implement various serial communication
protocols will give us added flexibility and options.

27

3.2.4 SDRAM
In any hardware design, there will be the need for storage and in general terms
we refer to Random Access Memory or RAM. Having a sizable chunk of memory
that you can temporarily use to store various bits of data and information is im-
portant. Another point to consider is being able to access the information in quick
manner and at random times. However, it is important to note that this memory is
not permanent.

Typically, RAM requires a few basic things in order for data accessibility to be
achieved. This includes the memory address, memory bank select, control signals,
data input, and data output. The way the memory is accessed largely depends on
the type which will be further explored.

Dynamic Random Access Memory or DRAM is implemented using a capacitor. The
dynamic characteristic is attributed to the nature of a capacitor. When dealing with
capacitors, the charge that is stored on a capacitor would start experiencing a loss
unless it a refresh action is taken. This is important because values or data that is
not being attended would be lost.

Synchronous Dynamic Random- Access Memory (SDRAM) refers to any type of
dynamic random accessmemory (DRAM) that is synchronized with the timing of the
CPU. The advantage of this is that, it removes the need to wait between memory
accesses since the clock cycle is known and having it synchronized to its connected
device allows for a more predictable inputs and outputs.

Another important distinction to be aware of as we are exploring avenues of stor-
age for hardware is SRAM. SRAM differs from DRAM in that rather than storing
information on capacitors, it utilizes a couple of inverters. Due to the fact that we
avoid using capacitors, you are not experiencing the same issue of leaking charges
and forgotten values. Although the benefit of SRAM over DRAM includes speed
and power efficiency, it is quite larger than DRAM. The disadvantage is due to the
increased size; it can ramp up costs more quickly as you are not able to fit as many
SRAMs on the board as you can with DRAMs. However, they are also very pop-
ular in modern processors as they can provide very fast caches. Due to this, we
will largely be exploring how to implement SDRAM in our project. The following will
describe the technical overview of the features of SDRAM.

SDRAM consists of 6 control signals: Clock Enable (CKE), CS (Chip Select), Data
Mask (DQM), Row Address Strobe (RAS), Column Address Strobe (CAS), and
Write Enable (WE). Devices that feature SDRAM are also divided into internal data
banks. These typically come in 2, 4, or 8 independent divisions. The Bank Selec-
tion (Ban) is an input signal that selects the appropriate bank address for a given
command. There are many generations of SDRAM with increasing transfer rates
and various operating voltages.

When using an SDRAM chip it is helpful to employ a SDRAM controller to better
handle interfacing needs. In addition to the 6 control signals used to delineate the
different commands for the SDRAM, we will be considering more information for

28

the user interface. This includes the address to be read or written to, read or write
signal, data for inputs and outputs, a “busy” status, and pulse signals to confirm
initialization and validation of operations.

The suggested protocol for the SDRAM controller is as follows:

1. Initialize the “busy” status signal to 0

2. Set variable to your input address

3. Set variable to store data

4. Set input signal for read/written to be 1 for write

5. Set input pulse signal to high to initialize operation

6. Update “busy” status to 1 to inform that the controller is already occupied with
a command

7. Update busy status to 1 when the command is taken care of

8. Set address to be read

9. Set read/write signal to 0 for read

10. Set input pulse signal to high to initialize operation

11. Receive confirmation of data read by updating output pulse signal.

The size of the SDRAM bus is 8 bits. The user may take multiple operations in
order to achieve sufficient data acquisition or storage.

The following state flow diagram illustrates how the controller utilizes the Finite
State Machine Model (FSM) to facilitate its operations.

29

Figure 16: SDRAM State Flow Diagram - Permission for Reprinting from Embed-
ded Micro

To fully understand the SDRAM chip in conjunction with the FPGA, we also need
to consider that a primitive variable of the FPGA is used to get samples of data
on both the falling and rising clock edges. This allows for double data rate output.
The configuration of the clock of the FPGA results in inverted clock signals. When
factoring in the timing and signal propagation in the FPGA, it is advantageous to
allow both devices to have time built in to stabilize their outputs.

In addition, there is a block in the programming of the FPGA that will ensure timing
of the FPGA is satisfactory. Since the inversion of the clock signals does not provide
a sufficient shift alone, the FPGA also has a primitive that provides delays to the
clock.

Finally, the Input Output Buffer is a primitive that ensures that the registers for input
and output are organized in a way to avoid further timing delays.

30

3.2.5 PCB
Printed circuit boards or PCBs are the products consisting of various electronic
components arranged through the creation of a schematic design. These compo-
nents can include integrated circuits, transistors, resistors, or capacitors that are
typically soldered on to the board.

There are different type of PCBs and they are characterized by how many sides or
layers they feature. They can be single-sided, with one copper layer, double-sided
with two copper layers, or even multi-layer with both inner and outer layers. As with
the latter, these are typically characteristic of more complex PCBs which generally
would require computer aided drafting (CAD) software to design. For our purposes
we will be learning to utilize Eagle CAD as our primary schematic editor.

3.2.5.1 Modern PCB
PCBs have evolved so much since their creation. From a huge room for a com-
puter to a spinning hard drive to solid state memory, technology has gotten smaller
and smaller. Circuits used to involve hand wiring and soldering each part sepa-
rately. Then the part was screwed on onto a board. When Printed Circuit Boards
first emerged they were revolutionary. For the first time the wires between the dif-
ferent components were printed inside of the board. This allowed circuits to be
made without wiring mistakes. The board would be made of the designed circuit
and then the parts were placed in the proper location on the surface or in their as-
signed holes. Over the years as PCBs evolve, the demand for them to be smaller
has increased which means the boards themselves need to be smaller and that
causes the constraint to transfer to the components. The need for the boards to
be smaller relates to the ever so popular portable technology of the new century,
smart phones, also laptops and numerous other small technology. From this push
to make things smaller PCBs have evolved into surface mount and through hole
mounting components. Also when accounting for components getting smaller that
allows more and more components be placed in one given area. Knowing the
complexities of PCB designs and the immense number of parts, layering the traces
within the PCB became necessary and efficient

3.2.5.2 Through-Hole Packaging
First through-hole mounting was the standard process for mounting parts onto the
bare PCB. Even though at one time though-hole technology was standard it is
still used for its increased reliability over the new standard, surface-mount tech-
nology. Components that require stronger connections to the PCB, such as heavy
or large components, should be mounted with through-hole technology. That way
with through-hole technology the component is connected with more solder within
the PCB, not just two surfaces bonded together. Another benefit is that the through-
hole components leads go into and out the other side of the board which creates
a stronger connection, decreased amount of corrosion disruption and allows the
component to withstand more environmental stress.

31

There are two types of through-hole components. The first is axial and the second
Is radial lead components. The axial leads have leads on two sides. Each lead
exits the component on either end and this allows the component to fit flat and
tightly to the board. Radial components have both leads leaving the same side of
the component. Radial lead through hold components take up less surface area
on the PCB. This is an advantage because it allows more space for placing more
components and leading to a more densely component covered PCB.

There are many advantages and disadvantages to through-hole mounted compo-
nents. This mounting technology provides strongermechanical bonds and can han-
dle high mechanical stress. The biggest disadvantage is that through-hole mount-
ing requires soldering on both sides of the board.

3.2.5.3 Surface-Mount Packaging
Surface Mount Packaging is the arrangement of mounted components on the sur-
face of printed circuit boards. It has also transformed the way printed circuit boards
were designed as it widely used over through-hole packaging. IBM developed this
technology in the 1960s and it rapidly grew popular by the 1980s.

Surface Mount Packaging has unique characteristics that allow it to be directly
placed on the PCBs. Typically, the components are compact, with small, com-
pact leads, if any. Much of the pins and lines used for connections would be short
or flat.

There are any advantages to surface mount packaging, making it an unsurprisingly
preferred method of packaging. As components are more compact in order to fit
on the surface, the PCBs can hold many more components, and therefore more
circuits. Also less space is wasted on the circuit board due to the through-holes.
They also make the labor process more efficient and benefit from higher produc-
tion than through-hole components. While through-hole packaging is one-sided,
surface mounted packaging can be done on both sides of the PCB. The connec-
tions are also typically better and errors tend to fix themselves as the solder aligns
components via surface tension.

Although popular, there are also some disadvantages. It is not suitable for manual
assembly as is directly incompatible with breadboards. Instead they would require
a custom PCB. Solder joints are also a weak point, especially as technology moves
towards the ultra-fine. Of course, surfacemount packaging is not feasible with large
parts or anything requiring high power or high voltage. Also the components are
often connected to the board through solder joints, and very occasionally, with the
additional help of adhesive. If much mechanical stress is expected, then surface
mount packaging would not be appropriate.

It is common to see a combination of through-hole and surface mount packaging.
For our purposes we will take advantage of this for our prototyping.

The following image depicts one of the advantages of using surface mount compo-
nents versus through hole components. In this case, it is clear you can fit far more

32

surface mount capacitors than their through – hole counterparts.

Figure 17: Surface Mount vs. Through-Hole - Image Available in the Public Do-
main

3.2.5.4 Thermal Considerations
As copper is thermally conductive and is an important part in PCBs, it is no surprise
that wemust consider temperature in the design of our PCBs. The integrated circuit
generates heat that will pass on to the copper layers of the PCB. This in effect
causes the whole PCB to warm up which can have direct impacts on the operation
of its components. There are various factors that can affect the temperature of
operation. These include how thick the copper is, how many layers are on the PCB
and how much of the copper is connected. Knowing this, we can also design for
temperature optimization.

One of the easiest ways to prevent temperature spikes is to increase the layers or
solid ground or other conductive layers that yields a more even distribution of heat.
Making sure there is a heat sink, conducting heat and letting it dissipate into the
ambient surroundings is important. Also, the thicker the board, or the higher the
copper weight, the more thermal heat the board can handle.

Other best practices include configuring your surface mount components in a way
that heats the PCB evenly as well. It is highly recommended to include via below
components to transfer heat to the copper layers. The general rule of thumb is that
for every watt of power you need to dissipate, the board needs an area of 15.3 cm2
for a 40 degrees Celsius increase in temperature.

With more even temperatures, we can use the following formula to approximate the
surface temperature. This must be calculated for cooling requirements.

P = Hc · A ·∆T (5)

Where P is the power dissipated, Hc is the heat convection constant, A is the area
of the board, and ∆T is the surface temperature-ambient temperature.

33

3.2.5.5 Layering
A PCB is composed of various layers in its base form as illustrated in Figure 18.

Figure 18: PCB Layers

The silkscreen is the lettering, symbols, and numbers visible on the surface of the
PCB that helps identify the components and the board. They are most often white
and almost never multicolor. Next, the soldermask is what often gives the board
its signature green color, although it can be a different color. It is used to insulate
the copper layer from making unintentional contact with other conductive material.
The copper layer is typically a laminated thin foil and can be found on both sides of
a PCB. The number of layers as mentioned earlier refers to the number of copper
layers. The most recommended layering is a 4 layer PCB as the cost difference
with any less is minimal and works well as a base. 6 layer boards are great for
mass quantities of sizeable boards. 12 layer PCBs are best for industrial designs.
Finally, the substrate is often made out of fiberglass, FR4. This is the base layer of
the PCB and gives it its thickness. There are also options to use flexible materials.

When designing PCBs, it is also recommended to start with the top and bottom
layers and add more inner layers if necessary. The outer layers are reserved for
signals with the inner layers containing power, ground, buses, and other signals.

3.2.6 Software
3.2.6.1 Speech Data Pre-processing
Human language is inherently noisy and vague. Not only is communicating with
each other using words like ”hot” and ”cold” difficult, but making sure people can

34

hear us clearly in the first place is another hurdle. Consequently, we need to refine
the data that we pass into our network in order for it to best ”understand” the words
being spoken. In other words, we would like to pre-process our speech data to so
that our network can receive the cleanest data during training and classification–
otherwise, our classification algorithm could misclassify a signal just like someone
could mistake one word for another. In speech recognition, it is commonplace to
break up utterances into phonemes, units of sounds that distinguish one word from
another in a particular language. Due to our small vocabulary, we opt for training
on entire words. In the three sections that follow, we discuss several common
approaches with regards to pre-processing speech data: using the raw waveform,
the power spectrum, or the MFCC features.

3.2.6.1.1 Raw Waveform
As mentioned previously, working with speech signals in the time domain is chal-
lenging due to the effects of noise and the intensity of speech. In recent approaches
employing CNNs, raw waveforms have been proven to be usable and effective,
allowing for real-time classification in speech recognition systems. This approach
also reduces the hardware required to pre-process speech signals, saving the costs
and computation time associated with DSPs and filters. CNNs are used heavily
within the computer vision community, excelling in various tasks, such as object
recognition, due to their translation-invariance. We exploit this property in a similar
approach in sections 3.2.6.1.2 and 3.2.6.1.3, highlighting a similarity between all
of our pre-processing approaches: signal segmentation and linear approximations
are vital in efficiently processing the non-linear nature of speech. Figure 19 demon-
strates the speech signal that we will analyze using the other pre-processing steps.
In particular, we will use simplify.wav for our discussion, a speech recording from
the LibriSpeech ASR corpus of the utterance ”how we must simplify,” sampled at
16 kHz.

Figure 19: Speech Signal in the Time Domain

35

3.2.6.1.2 Power Spectrum
Figure 20 demonstrates the power spectral density of the signal in Figure 19. Ac-
cordingly, most of the power in the signal lies in the range of human speech: 300-
3400 Hz.

Figure 20: Power Spectral Density of the Speech Signal

The power spectrum of a speech signal is practical due to two properties of the
Fourier Transform operator: it is stable in the presence of modest translations in
the signal and robust in the presence of additive noise. Being able to handle mod-
est translations means that the frequency-domain signal is minimally affected by
small shifts in the time-domain signal. For example, if the utterance ”how we must
simplify” began at the 1-second mark instead of its starting point in Figure 19, it’s
frequency-domain representation would be identical. Its only shortcoming is its per-
formance decrease with respect to higher frequencies. Fortunately, in the domain
of human speech, this is not a problem for us. A CNN uses the power spectrum
of a speech signal in a similar way, attempting to learn patterns in the data that
correspond to particular words or phrases.

3.2.6.1.3 MFCC
Mel-frequency cepstral coefficients (MFCC) are widely used in speech recognition.
MFCC features are features extracted from audio signals that are derived with the
goal of mimicking certain parts of human speech perception. In particular, MFCC
features mimic the logarithmic perception of loudness and pitch of human auditory
systems through the use of the Mel scale, which relates a perceived frequency with
its actual frequency. (6) below shows the conversion from perceived frequency to
the Mel scale while (7) goes from the Mel scale to the frequency, though it is worth
noting that there is no single Mel scale formula (i.e. the constants can differ).

M(f) = 1125 ln(1 + f

700
) (6)

M−1(m) = 700(exp(m

1125
− 1) (7)

36

Speech signals are filtered and shaped by the vocal tract, which includes the tongue,
teeth, etc. Because the shape of the signal determines what sound comes out, it is
of utmost importance to accurately reconstruct it. MFCC features allow us to accu-
rately represent the shape of these sounds so that we can have a better represen-
tation of the phonemes being produced. Generally, MFCC features are obtained
by the following series of steps:

1. Apply pre-emphasis to compensate for the suppression of high-frequency sig-
nals.

2. Partition the signal into short time frames.

3. For each frame, calculate the periodogram estimate of its power spectral den-
sity.

4. Apply the Mel-scale filterbank to the power spectra and sum the energy in
each filter.

5. Take the logarithm of all filterbank energies.

6. Take the DCT of the log filterbank energies.

7. Keep DCT coefficients 2-13, discard the rest.

8. Find the differential and acceleration coefficients for the DCT coefficients ob-
tained previously.

The dynamic nature of speech signals means that their statistics vary significantly
over time. We would like to take advantage of statistical stationarity, where the
statistics of a signal are constant over time, so that we can relax the computational
requirements of processing a speech signal by approximating it. Since small, win-
dowed time frames of sound vary less than longer ones, we want to select frames
small enough to approximately meet this criteria of stationarity but large enough
such that we can reliably reconstruct the signal. Before creating our frames, we
would like to highlight the importance of pre-emphasis. Pre-emphasis is a way of
compensating for the rapidly decaying spectrum of speech by applying a high-pass
filter to our speech signals. This compensates for high-frequency formants and
female speakers, which often produce speech signals at higher frequencies.

Once we have obtained these small, windowed time frames, we want to find the
power associated with them by computing the Fourier Transform of each frame.
From these results, we then derive the power spectra for the speech signal. Be-
cause the human ear cannot discern the difference between two similar frequen-
cies, we would like to cluster the frames that are close together and compute their
energies using a Mel filterbank. This effect increases with respect to frequency so
filters near the 0 Hz point are narrower than filters at higher frequencies. With these
filterbank energies, we then take the logarithm to mimic the human auditory sys-
tem’s logarithmic perception of loudness. Finally, we can take the Discrete Cosine

37

Transform (DCT) to decorrelate the energies of the overlapping frames, giving us
coefficients that we can use as features for classifying speech. We can achieve
optimal performance by only taking coefficients 2-13 of the 26 DCT coefficients.

Now we will dive into these steps mathematically to understand how they truly oper-
ate. As mentioned in section 3.2.6.1.1, we will use simplify.wav for our discussion,
a speech recording of the utterance ”how we must simplify,” sampled at 16 kHz.

1. To apply pre-emphasis to our speech signal, we will pass it through a high-
pass filter with a z-transform as shown in (8), where a typically has values
between 0.9 and 1.0.

H(z) = 1− a

z
(8)

Figure 21 displays the speech signal before and after pre-emphasis. The
signal after pre-emphasis is sharper and has a smaller volume than before
pre-emphasis.

Figure 21: Speech Signal With and Without Pre-emphasis

2. Window sizes typically range from 20-30 ms. We will select 25 ms as our
window size. If our speech signal is sampled at 16 kHz, then every window
will have 16,000 × 0.025 = 400 samples. Though overlap is optional, we
will opt to use 10 ms of overlap, meaning that every frame will start at some
increment of 160 samples.

3. Now, we will want to calculate the power in each frame. We do this by mul-
tiplying each frame fi(n) with a Hamming window h(n) before computing the
Fast Fourier Transform (FFT), a computationally-improved version of the Dis-
crete Fourier Transform (DFT). The DFT is shown in (9), where i represents
the current frame andN represents the total number of samples in the current

38

frame (i.e. 400 samples).

Fi(k) =
N−1∑
n=0

fi(n)h(n)e
−j2πkn

N , 0 ≤ k ≤ N − 1 (9)

The Hamming window is used in order to keep the continuity of the first and
last points in the frame, allowing us to see sharper peaks in the frequency
domain after taking the FFT. The Hamming window is defined by (10). Curves
for varying values of α are shown in Figure 22.

w(n, α) = (1− α)− α ∗ cos
(

2πn

N − 1

)
, 0 ≤ n ≤ N − 1 (10)

Figure 22: Generalized Hamming Window

In practice, the value of α is set to 0.46. Taking the FFT of the signal before
applying a Hamming window is the same as applying a rectangular window.
At first, applying a Hamming window to the signal might not seem like a valid
approach. A rectangular window takes the entire signal into account while
the Hamming window only emphasizes the samples close to the center of the
signal or frame; however, if we incorporate overlapping frames, we are able
to take most of the samples that are on the tail of the curve into account and
accomplish our goal of better isolating peaks in the frequency domain.
The advantages of using a Hamming window are best illustrated in the exam-
ples in Figure 23 and Figure 24, using the 22nd frame of our speech signal
from simplify.wav. On the left is the original signal and on the right is the
signal after applying a Hamming window. In the time domain, the effects of
the windowing accurately represent the diminishing effect that the tails of the
Hamming window have on the signal. While the effect is less pronounced

39

in the frequency domain representation, the bottom-right plot in Figure 24 is
slightly more pronounced than its counterpart.

Figure 23: Effects of Hamming Windowing in the Time Domain

Figure 24: Effects of Hamming Windowing in the Frequency Domain

Now that we have applied a Hamming window to all of our frames, we are
ready to take the FFT. Since speech and other time domain signals are real-
valued, we only need to take half of the coefficients generated from the FFT
in order to reconstruct the original signal–the other half correspond to com-
plex values. In the previous example, we took the FFT size to be equal to

40

the sampling rate, 16,000 kHz. Taking only half of the coefficients generated
would give us 8,000 bins, as shown in the plots of Figure 24. Since our fre-
quency resolution per bin is 8000 Hz / 8000 bins = 1 Hz/bin, we can see that
most of power in our frame is around 2000 Hz, which is appropriate for hu-
man speech (300-3400 Hz). After computing the FFT, we would like to find
the power spectral density in each frame using (11), as is again shown by
Figure 24.

Pi(k) =
1

N
|Fi(k)|2 (11)

4. We will now return to (6) to cluster the frequency bins and compute their en-
ergies. The Mel filterbank is a set of 20-40 triangular filters that are applied
to the power spectra of the speech signal obtained in the previous step. It is
standard to use 26 filters, so that is what we will use here, as shown in Figure
25.

Figure 25: Mel-scale Filterbank with 26 Filters

The linear scale, Hamming-windowed signal in Figure 24 is used as an ex-
ample of what these filters do in Figure 26. The filterbank energies are com-
puted by performing matrix multiplication between the Mel filterbank and the
signal frames. In the context of an individual frame, summing the values in
the bottom-left subplot in Figure 26 produces this result for two of the filters.

41

Figure 26: Effects of Mel-scale Filters on Signal

5. This step is quite self-explanatory. We take the energies that we calculated
in the previous step and simply compute their logarithm.

6. The DCT represents a signal as a sum of cosines of varying magnitudes and
frequencies–it is similar to the real part of the DFT. While there are eight the-
oretically different versions of the DCT, we will be using DCT-II (as shown in
(12)), commonly referred to as ”the DCT.”

F (k) =
N−1∑
n=0

f(n) cos
[
π

N

(
n+

1

2

)
k

]
, 0 ≤ k ≤ N − 1 (12)

Passing our 26 log filterbank energies through the DCT will give us our 26
coefficients.

7. Finally, we can extract coefficients 2-13 of the 26 computed coefficients and
discard the rest.

8. The coefficients that we have computed only correspond to the static com-
ponents of the power spectrum of each frame. We would like to compute
additional coefficients, the derivative and acceleration coefficients, that cor-
respond to how the MFCCs change over time. For each frame, we can use

42

(13) to compute these additional coefficients, where ct corresponds to ele-
ment t in the MFCC array (of the current frame) and N corresponds to the
size of our window for performing a linear approximation to find the deriva-
tive coefficients. N is usually set to 2. To find the acceleration coefficients,
the same equation and process is used, except the derivative coefficients are
used in place of ct, the MFCCs.

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

(13)

Since ct+n and ct−n will go out-of-bounds at the beginning and end of the
speech signal, the first and last element are replicated and extended by the
appropriate amount (i.e. if the index is less than zero, set the index to zero).

3.2.6.2 Speech Recognition Algorithims
After covering the pre-processing steps we will implement on our data, we now
move on to the algorithmic side of things–how can we use the features we acquired
to aid us in training a model and classifying speech? Many popular algorithms have
been developed over the years for speech recognition. We will stick to discussing
a subset of these at a somewhat high-level, so that we are not bogged down by
excessive detail but are able to understand the underlying algorithm. In particular,
the algorithms we will discuss are have had the most recent success in acoustic
modeling and speech recognition; namely, hiddenMarkovmodels, neural networks,
and convolutional neural networks.

3.2.6.2.1 Hidden Markov Models
Hidden Markov models (HMM) are generative and statistical models in which we
observe a sequence of observations, O = {o1, o2, . . . , oT}, whose probability dis-
tributions are governed by hidden states. HMMs are commonly used in speech
recognition, particularly with MFCC features, because a speech signal can be mod-
eled as a piecewise stationary process. Specifically, speech segments of about 10
ms can be approximated as short-time stationary signals. In order to understand
how we can use HMMs as acoustic models to classify speech, we will start by in-
troducing some of the theory behind Markov chains, simpler Markov models that
have observable states.

A discrete-timeMarkov chain is a systemwithN states, S = {s1, s2, . . . , sN}. At each
evenly-spaced, discrete-time interval, there is a transition from state si to state sj,
where the probability of transitioning to particular state sj depends on a matrix of
state transition probabilities. For a system with N = 3, this matrix is shown below.

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The state at time t is a random variable qt. The probability that qt+1 will assume
a particular state would be typically conditioned on the previous states qt−1, . . . , q1.

43

The first-order Markov property, however, establishes that a future state, qt+1, is
independent of the past states, qt−1, . . . , q1, given the present state, qt. In other
words, the first-order Markov property allows us to remove additional conditioning
on the past by exploiting one of the consequences of independent distributions:
P (A|B) = P (A) if A and B are independent.

P (qt+1 = sj|qt = si, qt−1 = sh, . . . , q1 = sg) = P (qt+1 = sj|qt = si) (14)

Where 1 ≤ g, h ≤ N and sg and sh in (14) are arbitrary states. Using this result, the
transition probabilities take the form in (15).

aij = P (qt+1 = sj|qt = si), 1 ≤ i, j ≤ n (15)

For concreteness, consider the example shown in Figure 27. This Markov chain is
a weather model with N = 3, S = {c, s, r}, and a state transition matrix as shown
below. The states c, s, and r correspond to cloudy, sunny, and rainy, respectively.

A =

 0.3 0.2 0.5
0.3 0.6 0.1
0.1 0.4 0.5


Notice that by using the Law of Total Probability, we can decompose the probability
that qt = c transitions into any other state as a summation of the horizontal entries
in the first row of the state transition matrix.

P (qt+1 = c|qt = c) + P (qt+1 = s|qt = c) + P (qt+1 = r|qt = c) = 0.3 + 0.2 + 0.5 = 1

This can be generalized for any state si by (16).

ai =
N∑
j=1

aij = 1, aij ≥ 0 (16)

This random process is clearly an observable Markov model–at each time t, the
output of the model corresponds to the random variable qt, which directly maps to
a particular state si. To expand on Figure 27, suppose that we have an initial state
q1 = c. In general, we define the probability of an initial state as in (17).

πi = P (q1 = si), 1 ≤ i ≤ N (17)

What is the probability that the sequence of weather patterns for the next five days
is cloudy, cloudy, sunny, rainy, sunny? Stated more formally, what is the probability
of the observation sequence O = (c, c, s, r, s) for the times t = {1, 2, · · · , 5} given the
model? The first-order Markov property, combined with the state transition matrix,
gives us the information we need to compute the solution to this question.

P (O|Model) = P (c, c, s, r, s|Model)
= P (c)P (c|c)P (s|c)P (r|s)P (s|r)
= πc · acc · asc · ars · asr
= π1 · a11 · a21 · a32 · a23
= 1 · 0.3 · 0.3 · 0.4 · 0.1
= 0.0036

44

Figure 27: Discrete-Time Markov Chain of the Weather - Permission for Reprint-
ing Pending

We now move forward to HMMs. The first notable difference between Markov
chains and HMMs is the sequence of observations: qt no longer directly maps to
states. Instead, it maps to a new set V = {v1, v2, . . . , vm} which defines the set of
m symbols that we can sample from when making observations. At every time t,
qt will sample a symbol vk from V based on the probability distribution imposed by
the current hidden state si. Specifically, (18) describes the probability distribution
of a symbol vk.

bi(k) = P (vk|qt = si), 1 ≤ i ≤ N (18)
Sticking with the N = 3 example, we can create a vector B that encapsulates this
information for all possible states, as shown in (19).

B =

 b1(k)
b2(k)
b3(k)

 (19)

We should now take stock of what we can know about HMMs: the number of states,
N , the number of symbols, M , the state transition probability matrix, A, and the
symbol observation probability vectorB. The resultingmodel is a doubly embedded
random process where the first random process describes the transitions from state
si to state sj, with N being the total number of states, while the second random
process describes the production of the sequence of observations, with M being
the total number of symbols that can arise.

At the beginning of the section, we mentioned how the HMM is a generative model.
This means that once it is fully specified, it is capable of generating an observation
sequence O = (o1, o2, . . . , oT), where each observation ot is a symbol vk and T
corresponds to the total number of observations. Alternatively, we have a model
for how a given observation sequence was generated by an HMM.

45

A complete HMM specification requires the specification of N and M , the obser-
vation symbols, and the three probability measures A, B, and πi, the initial state
probability. This is usually packaged into the notation in (20).

λ = (A,B, π) (20)

Since our dictionary is only 14 words, we will represent each word with its own
N -state HMM. Classification of an utterance containing multiple words from our
dictionary is a matter of combining the 14 HMMs used for each word in the dictio-
nary. For each HMM, we are tasked with encoding the speech signal of the word or
its features into a set ofM symbols. With our HMMmodel, there are three problems
that we want to solve for the model to be useful for speech recognition:

1. Given an observation sequenceO = (o1, o2, . . . , oT), and a model λ = (A,B, π),
how do we efficiently compute P (O|λ), the probability of a sequence of ob-
servations given a specific HMM?

2. Given an observation sequenceO = (o1, o2, . . . , oT), and a model λ = (A,B, π),
how do we determine the sequence of states Q = (q1, q2, . . . , qT) that best
models the observations?

3. How do we adjust the model parameters λ = (A,B, π) to maximize P (O|λ)?

Answering these questions mathematically involves a significant background in
probability and statistics, as well as knowledge of dynamic programming. These
questions are enough to guide our understanding.

Problem 1 corresponds to the evaluation of themodel. If we have a set of competing
models Λ = {λ1, λ2, . . . , λL}, we would like to calculate P (O|λl) for every model in
Λ to evaluate which model best represents the observation sequence. In our case,
L = 14. If we would like to classify the utterance ”eight,” we would have to compute
P (O|λl) for every model in Λ. The model with the highest value is the model that
best corresponds with the utterance.

Problem 2 corresponds to attempting to find the ”correct” state sequence for the
model λ. Except in the degenerate case, where the probability distributions of the
symbol observations are equal to one for every state, there is no single correct
state sequence. Optimality criteria are imposed in order to improve performance
for speech recognition.

Problem 3 corresponds optimizing the parameters of a model λ to best describe
how a given observation sequence comes about. This is where training comes in–
an observation sequence, commonly referred to as the training sequence, is used
to adjust the model parameters. Since we are using an HMM for each word instead
of each phoneme, our training sequence is the symbol-encoded speech signal we
mentioned earlier.

46

3.2.6.2.2 Neural Networks
Whilemachines excel at performingmassive computations in a relatively short time,
they perform poorly on certain tasks that are easy for humans. In the language do-
main, this is evidenced by the complexity behind designing speech recognition sys-
tems. HMM approaches, as defined in the previous section, commonly used MFCC
features to build a generative model of words or phonemes. Instead of building this
generative model and then computing its difficult, near-intractable probability distri-
butions, could we possibly learn a classifier instead? Neural network models offer a
possible solution to the problem, forming the foundation of the CNN that we employ
as our classifier. To begin our discussion, consider the images in Figure 28.

Figure 28: Image from the MNIST Dataset with Increasing Noise

While it is quite obvious to humans that all three of these images are the number
seven, machines do a poor job at realizing that these numbers are the same, espe-
cially with the third image. Until recently, they have been unable to take advantage
of richly structured information, primarily due to the computational complexity of
many learning algorithms on limited hardware. Inspired by the biological neural
networks in our brain that allow us to make vast inferences, artificial neural net-
works (ANN) were created in hopes of being able to give machines the ability to
process the noisy information that previous systems could not, such as the exam-
ples above.

The first computational model of an ANN was developed in 1943 by Warren McCul-
loch and Walter Pitts. ANNs were meant to be analogues to biological neurons, in-
corporating many of their features, such as layering patterns, axons and synapses,
signal thresholding, and Hebbian learning. The philosophy was that this model,
arranged like neurons in the brain, could approximate human learning. While there
are now many different implementations of ANNs, they still share most of the afore-
mentioned components with their biological counterparts, though these similarities
are dwindling. Recent progress in machine learning has taken these algorithms
further away from biological plausibility, such as in the backpropagation algorithm:
no evidence has suggested that the backpropagation algorithm is what actually
happens in the brain during learning. That is not to say that this trend will continue.

47

Convolutional neural networks, as we will see in the next section, are a biologically
inspired by the animal visual cortex.

Figure 29 demonstrates an example of a 3 × 4 × 4 × 1 ANN. The first layer is
known as the input layer, the last layer is known as the output layer, and any layers
in the middle are known as hidden layers. Until the 1980s, ANNs were not used due
to their inability to solve the exclusive-or circuit and their computational complex-
ity. Since then, ANNs been immensely successful, solving the exclusive-or circuit
and other tasks that were once thought impossible for machines. Extending the
success of these networks, deep neural networks (DNN) took advantage of recent
developments in hardware to extend the power of ANNs. DNNs are the same as
ANNs, with one caveat: they have more layers. The amount of layers needed for
an ANN to be considered a DNN is unclear but usually more than two hidden layers
is a DNN. We will refer to both of them as neural networks (NN) for simplicity.

Figure 29: Example of a Neural Network (Permission Granted by Andrej Karpa-
thy)

Acrossmultiple domains, NNs have outperformedmany of the previous techniques.
One of the notable examples includes AlphaGo, a machine learning system that
beat the world champion several times in Go, a game with an immense combina-
torial search space. How can NNs learn from data and perform so well in various
tasks despite a noisy environment?

The example images used above were from the MNIST dataset, a popular bench-
mark for NNs developed by Yann LeCun. The images in the MNIST dataset are 28
× 28 gray-scale images with pixel values ranging from 0-255. Before being passed
through a network, these images are flattened into a vector X of pixel values. The
connections between each layer make up the weights of the NN, stored in a matrix
Θ. The matrices corresponding to the connections between the first two and next
two layers are shown in (21). Keep in mind that the indices i and j of θij correspond
to a node in layer i connecting to a node in layer j. Consequently, the θ11 in Θ12 is
not equal to the version in Θ23. For a more in-depth discussion on matrix algebra,

48

see Appendix C.

Θ12 =

 θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34

 Θ23 =


θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44

 Θ34 =


θ11
θ21
θ31
θ41

 (21)

NNs take an inputX at the first layer, called the input layer, and matrix multiplication
is performed with the weights between this layer and the next, as shown in (22)

ΘT
12X =


θ11 θ21 θ31
θ12 θ22 θ32
θ13 θ23 θ33
θ14 θ24 θ34


 x1

x2

x3

 (22)

This output is then fed into a non-linear activation function. While various activation
functions can be used, the sigmoid function in Figure 30 is the most common.

Figure 30: Sigmoid Function

This choice of activation function is commonly used inmost NNs, with a x ∈ (−∞,∞)
and f(x) ∈ (0, 1). Specifically, the mathematical equation for the sigmoid function
is shown in (23).

Sigmoid(ΘT
12X) =

1

1 + expΘT
12X

(23)

This process is the same for the next pair of layers, with the output of this step
serving as input for the next. Ultimately, we will receive an output vector at the end.
What can be interpreted by this output vector? In the case of image classification,
we would like our final vector to tell us what number the network believes it ”saw”;
likewise, for speech recognition, we would like this vector to tell us what utterance
the network believes it ”heard.” This is where the backpropagation algorithm comes
into play.

49

The backpropagation algorithm is an efficient way of training NNs. After the output
o of the final layer is received, it is subtracted from a vector of target values t to find
the error ejk of the kth node in the jth. This error is used to correct the values of
the weights in the NN by propagating it backwards through the network, layer by
layer. Using the final layer in Figure 29, (24) shows the error calculation.

e41 = t− o41 (24)
The error value corresponds to the error at that output node, which is contributed
by all of the nodes that feed into it. Accordingly, this error should be sent backwards
in a proportional manner, with inputs and weights that contributed more receiving
more of the error. To continue our example, (25) shows that our four errors from
o41 would be functions of the weights that connect the nodes in hidden layer 3 to
the output node in layer 4:

e31(θ11) =
e41θ11

θ11 + θ21 + θ31 + θ41
e32(θ21) =

e41θ21
θ11 + θ21 + θ31 + θ41

e33(θ31) =
e41θ31

θ11 + θ21 + θ31 + θ41
e34(θ41) =

e41θ41
θ11 + θ21 + θ31 + θ41

(25)

The denominators of these errors can be omitted since they are just normalizing
factors and will not affect training. Representing this using matrix multiplication:

Θ34E =


θ11
θ21
θ31
θ41

 [
e41

]
(26)

Another piece of the puzzle is to realize that the errors at each node are functions
of the weights they feed out to, e(θij), as was shown in Figure 25. It would make
sense that our next step would be to minimize the error function with respect to
every weight in every layer in the network to improve the performance of our NN.
Figure 31 demonstrates a simplified version of one of our error functions e(θij). In
this figure, our weights correspond to w, the error function to J(w), and the function
minimum, local or global, to Jmin(w).

Figure 31: Function Minimization using Gradient Descent (Permission Pending)

50

We can solve an optimization problem to find the value of the weight w that mini-
mizes the error J(w) contributed by the associated node. Using calculus, we know
that we can find the minimum of some convex function by taking the derivative of
that function and setting it equal to zero. Unfortunately, this is often infeasible in
practice as the error functions increase in complexity. Instead, we opt to use gra-
dient descent to incrementally adjust our weights until they have reached a local or
global minima.

Finding the minimum of this error function simply involves taking its gradient, or
partial derivative, and adjusting the weight appropriately. Clearly, if the gradient is
negative, then we should add to the existing weight and if the gradient is positive
we should subtract from the existing weight, as indicated in Figure 31. This leads
us to (27), the update equations for the weights.

θnewij = θoldij − α · de

dθij
(27)

α is known as the learning rate and it fine-tunes the magnitude of the update we
make whenever we apply the update equations to the weights. The gradient is
shown in (28)–we omit its derivation for the sake of brevity.

de

dθij
= −(tj − oj) · Sigmoid(

∑
i

θi,joi) · (1− Sigmoid(
∑

iθijoi) · oi (28)

While our example was a simple 3 × 4 × 4 × 1 network, our network and others
used end up being significantly larger. With the update equations explained, the
NN can now perfectly learn a function that maps an input, such as an image or
speech signal, to a target value. There remains one problem: the NN can only
classify this single example. One of the essential features of human learning is the
ability to generalize. Earlier, we showed the three pictures of the number seven
with increasing noise. If the NN was trained to recognize the first seven, it would
fail to recognize the other two, despite the fact that they were written in the exact
same way. Additionally, if another seven was written and converted to a 28 × 28
pixel image, the network would again fail to generalize and classify it correctly. This
is exacerbated with speech signals because of the drastic increase in data points
per input. For example, the 28 × 28 image from the MNIST dataset stretches
out to form an input vector of length 784 while our speech signal example from
simplify.wav is a vector of length 38,400. Clearly, this massive increase in data
points would mean that we would need a significantly larger neural network size to
extract relevant features from the input. This added complexity calls for additional
training examples to achieve the same performance.

In general, NNs are not very good at generalizing, requiring hundreds of thou-
sands of examples to acquire performance close to the state-of-the-art. This data-
dependency categorizes NNs as a type of supervised learning algorithm. Despite
this data-dependency, supervised learning algorithms are still extremely useful if
the data is available. For our application, there are a handful of open-source speech

51

datasets. Since we are focusing on such a small vocabulary, we can readily create
our own speech dataset.

With the basics of NNs covered, we can proceed to our discussion of a new form of
NNs, known as convolutional neural networks. Given that we have sufficient data,
NNs seem promising; however, their primary shortcoming for our application is their
instability when dealing with time-series data. Because they are not translation-
invariant, small shifts in the time-domain signals means that the network will fail
to recognize the speech signal. In the next section, we will see how convolutional
neural networks are able to deal with this type of data.

3.2.6.2.3 Convolutional Neural Networks
Convolutional neural networks (CNN) are quite similar to the NNs that we have
discussed previously. Just like NNs, they are biologically-inspired, borrowing their
properties from the neurons in the animal visual cortex. CNNs are also a type of
supervised learning algorithm, requiring large training sets to improve performance.
As we mentioned towards the end of the last section, CNNs are advantageous
due to their ability to handle translations in a time-domain signal, the specifics of
which we will cover shortly. The specific class of NNs that we were studying in the
previous section are known as multi-layer perceptrons (MLP), a network of layers
of fully-connected nodes. Unlike MLPs, CNNs are comprised of different layers that
each perform a unique operation. The most common layers of a CNN are:

• Convolutional layer (CONV) - as noted in the name, this layer convolves the
input data with a pre-specified number of filters of a pre-specified size.

• Pooling layer (POOL) - this layer performs a downsampling on the inputs,
easing the computational requirements.

• ReLU layer (RELU) - this layer applies a piecewise linear function to the input
layer. This function is the equivalent to applying max(0, x).

• Fully-connected layer (FC) - this layer is the same as the layers used in NNs
discussed previously.

The architecture of a CNN resembles the following pattern: input layer, CONV,
RELU, POOL, output layer. The CONV, RELU, and POOL are packaged together
in that order and are generally cascaded several times. Before we dive into the
nuts and bolts of how CNNs work, it is important to realize why we should depart
from MLPs. In addition to being unable to handle translations in the signal, MLPs
are computationally inefficient. Let us take an image from the MNIST dataset as
an example: a 28 × 28 pixel image. This leads to an input layer with 28 · 28 =
784 nodes. With 10 possible numbers, we would need 10 nodes at the output
layer. If we can assume a 784 × 100 × 10 network, 100 nodes in the hidden layer
corresponds to 784 · 100 = 78,400 parameters to compute. While this might be
feasible, if we instead take a 200 × 200 pixel image, the number of parameters we

52

have to compute now goes up to (200 · 200) · 100 = 4,000,000 parameters. Since
each layer is fully connected to the next layer, larger images and/or network sizes
are too cumbersome for these networks to handle efficiently. On the other hand,
the nodes in a CNN take advantage of local connectivity, as shown in Figure 32.
This feature alone drastically reduces the computational requirements of forward
and backward propagation.

Figure 32: Locally-Connected Neural Network (Image Available in Public Do-
main)

With local connectivity, we can control the number of parameters in a CNN to avoid
the computational explosion that occurs with standards NNs by taking advantage
of parameter sharing. Due to the fact that our speech signal might have a slight
translation, parameter sharing allows us generalize the features we extract from
one part of the image. To put this more concretely, suppose we have two speech
signals, one that starts at time t1 and one that starts at some later time t2. While the
standard NN would be unable to recognize utterance, the CNN takes advantage of
parameter sharing to gain the translation-invariant With an understanding of why
we would like to depart from MLPs, we can now shift our discussion back to CNNs.
With respect to data flow, it is easiest to think of CNNs as taking an input volume, a
height × width × depth signal, and transforming it into an output volume containing
the class scores (e.g., 10 class scores for our MNIST image example). Figure 33
demonstrates this transformation.

Figure 33: Example of an Convolutional Neural Network (Permission Granted by
Andrej Karpathy)

53

At a very high-level, parameter sharing allows us to take the weights and bias and
share them across all of the filters. Having a better idea of how the input volume is
transformed by the network’s layers, we will need some more definitions to under-
stand the output layer.

• Depth - The depth of the output volume corresponds to the number of filters
we would like to use in the CONV layers. For example, if the first CONV layer
takes an image from the MNIST dataset as input, then different nodes along
the depth dimension may activate in presence of various oriented edges, just
like receptive fields do in the animal visual cortex. We will refer to a set of
node that are all looking at the same region of the input as a depth column.

• Stride - The stride specifies the amount of which we slide the filter. For an
image, when the stride is one then we move the filters one pixel at a time.
Similarly, when the stride is two then the filters jump two pixels at a time as
we slide them around.

• Zero-padding - The zero-padding pads the input volume with zeros around
the border. This specification allows us to control the spatial size of the output
volumes, preserving the size of the input volume so the input and output width
and height are the same.

3.2.6.3 Programming Languages
3.2.6.3.1 C/C++
C and C++ are software programming languages. They are both very useful for
all around, general purpose programming with a static type design. They are also
designed with the procedural programming paradigm in mind. However, C++ has
the added benefit of offeringmultiple paradigms, including object-oriented program-
ming.

C first appeared in the 1970s and was designed by Dennis Ritchie at Bell Labs and
became one of the most popular coding languages of all time. C++ emerged in
the 1980s C programming language also is standardized by the American National
Standards Institute. Both C and C++ are have also become standardized by the
International Organization for Standardization (ISO).

Both are low-level programming languages that are extremely useful for system
and embedded programming. They also have the advantage of being very avail-
able on a multitude of systems. They also have served as the inspiration of many
programming languages that developed, including Java and C#.

C++ has the advantage of the object oriented design paradigm. This is essentially
the C programming language but with the ability to create classes. Object ori-
ented programming methodology is extremely useful because it allows for modular
design. When creating complex software projects, it is helpful to abstract differ-
ent parts into objects and classes. Each of these objects include attributes and

54

methods associated with it. It also has the added feature of reusable code be-
cause through inheritance, similar entities do not need to be created completely
from scratch. It also contains new features such as virtual functions and operator
overloading.

Although C++ is not taught at the University of Central Florida anymore, its similar-
ities to the C programming language makes it a lot easier to learn. The IDEs that
we will be using also provide support for these languages.

3.2.6.3.2 Lucid
Lucid is a relatively new dataflow programming language. It was designed by Ed-
ward A. Ashcroft and William W. Wadge in the 1970s. Dataflow programming is
a paradigm of software architecture that is also known as stream processing. It is
also known as reactive programming because it is typically used in non-Von Neu-
mann processors. Rather than follow a more procedural design, Lucid utilizes a
methodology that operates more based on the flow of information.

The syntax of Lucid varies widely from other programming languages. Indeed, that
is intentionally included as part of the design. It is made to encourage the idea that
the data flows are the objects at hand. However, it is very similar to Verilog but
influences from C++ and Java can also be found.

As a Hardware Description Language (HDL), Lucid is extremely helpful in program-
ming embedded systems such as FPGAs. Due to the fact that it eliminates the need
for creating finite state machines and various flip-flop plans, the Lucid programming
language greatly simplifies digital design projects.

Lucid programming files are often implemented with a sole declaration of a module.
This module declaration also includes a parameter list. The parameter list is op-
tional and any parameters listed should have a specified value. The port list is also
included in the module. It lists the signals that are sent and received by the module.
These signals can be classified as one of the following types: Inputs, Outputs, and
Inouts.

Inputs refer to read only data that is sent to the module. Outputs refer to information
written inside the module that would be sent out. Inouts are signals that can be
both read and written. The main part of the Lucid Programming File is made up
of variables, instantiations of modules, and various programming blocks. These
programming elements are very similar to most languages.

There are many advantages to the Lucid programming language. This includes
a decrease in the amount of code that is needed to write for a project as well as
providing for debugging in real time. This is possible through the Mojo IDE, which
we can use to interface with our selected hardware. The challenges in using Lucid
is that it is a new programming paradigm to learn, as well as that it is still new syntax
to learn.

55

3.2.6.3.3 Verilog
Verilog is a Hardware Description Language (HDL) that came about in the 1980s
and grew more commonly used as deficiencies were addressed in the 2000s. It
is statically typed and is most popular for use in digital design projects. This also
includes the verification of digital circuits, analog circuits, and mixed-signal circuits.
As an HDL, Verilog includes the feature of delineating time propagation and signal
sensitivity. Due to the fact that Verilog provides both non-blocking and blocking
assignment operators, one could update finite state machines without the need for
initializing and declaring temporary variables.

The advent of Verilog led to an increase in productivity for hardware designers that
were already taking advantage of schematic software. The syntax of Verilog was
designed with the C programming language in mind. This was due to the fact that
the C programming language was already very popular for software engineering
development. Much of its semantics are very similar to those in C, including its
control flow keywords. Verilog can be implemented through a hierarchy of mod-
ules. These modules are designed with an internal hierarchy that allows them to
communicate with other modules. These modules have inputs, bidirectional ports,
and outputs that are declared within them. Although these modules include se-
quential programming statement blocks, they are executed concurrently. Hence,
they are also classified as a dataflow language.

Although much of the Verilog programming language is not directly associated with
an analog counterpart, it utilizes direct mapping instead. Each Verilog process
has two special keywords used for declaration: always and initial. Verilog also
has the fork/join keyword pair to build processes that will be run in parallel. The
corresponding IEEE standard for the Verilog language also delineates four-valued
logic. These four states are 0, 1, X, and Z.

Verilog is very useful in FPGA development and includes the advantage that there
are a lot of resources and tutorials out there. In our project, Verilog would be idea
for interfacing and customizing our FPGA. It can also be used to develop tools that
can easily interface with other devices.

3.2.6.3.4 Python
Python is another all-purpose programming language with the high-level and dy-
namic type distinction. Like C++ it is also applicable to multiple paradigms, includ-
ing object oriented, functional, and procedural programming design.

Python is a very new language, having been created in the early 1990s and ever
growing in its popularity today. Python was designed with the beginner programmer
in mind and focuses on code readability. This readability is ensured on both small
and large scale programming projects.

This programming language is also available on many operating systems. It is also
has influences from C/C++ and Java. It’s reference, CPython, is open-source and
maintained by a community of developers.

56

Python has of late been gaining traction in due to its broad appeal and application.
In universities, Python is useful as a good beginner’s language due to its strict
structure. Python is also popular within the scientific community for scripting and
data science purposes. The advantages of Python are many – including ease of
learning, readability, and its wide applications.

The disadvantages are that as it is new, there are not as many resources out there
especially with regards to embedded development. Indeed, lower level languages
are far preferable for those purposes.

3.2.6.4 Graphical User Interface
3.2.6.4.1 Visual Studio
Visual Studio is a Microsoft integrated development environment (IDE) that is often
used for software development on Windows OS. It is offered at a Freemium license
and supports development in C, C++, VB.NET, C#, and F# in house. However,
support for other languages can be installed through separate components. It also
provides a quick and easy way for creating graphical user interfaces. Through a
What You See is What You Get (WYSIWYG) design view, you can drag and drop
components and generate the skeleton for programming the widgets.

3.2.6.4.2 QT
Qt is an open source governed application framework commonly used to develop
graphical applications on many platforms including Windows, Linux, and more. Qt
Creator is a C++ and QML IDE with an integrated graphical user interface design
tool called QT designer. This software aims to simply application development with
its own tools.It also allows for easy use with Python through PyQt libraries.

3.2.6.5 Xilinx ISE Design Suite 14.7
Xilinx ISE is a development environment used for the analysis and synthesis of
hardware-description language code as well as the place and route and configu-
ration stages of FPGA programming. The ISE GUI contains a design hierarchy
window, source code editor, and a console that displays status, warning, and er-
ror messages. This configuration, while looking outdated and overly complicated,
allows us to develop our design and program the Spartan-6. The FPGA present
on our Mojo development board (the same one we will use for our final design)
can be only be targeted using Xilinx ISE. The bit stream design that can be gen-
erated through using the ISE Design Suite software is especially important as this
is what our chosen FPGA can utilize and read. It is particularly great for design-
ing with teams. For modeling and simulation we use Mentor Graphic’s ModelSim
rather than Xilinx’s ISim due to familiarity with its interface and a richer debugging
environment.

Xilinx has partnered with third-party community to offer highly capable tools, fea-
tures, software libraries, as well as design methodologies. This allows anyone to

57

get quickly up and running with designing tools for FPGAs and other embedded
systems.

58

4 Related Standards and Design Constraints
4.1 PCB Standards

• IEEE 1149.7-2009 – requires any device functioning as a debug and test sys-
tem to provide pull-up bias on the TMS and TDO pins.

– The JTAG-SMT2 that we are incorporating into our PCB design has weak
pull-up resistors of 100KOhms on the TMS, TDI, TDO and TCK pins in
order to meet this standard.

• IEEE 1149.1 – requires the TAP and boundary-scan architecture include all
mandatory elements including: the TAP, the TAP controller, the Instruction
register, the instruction decoder, the boundary-scan register and the BYPASS
register.

– The Spartan-6 FPGA featured on our PCB design is fully compliant with
this standard.

• 2002/95/EC (ROHS) requirements for safety don’t contain more than a certain
number of parts per millions of certain dangerous substances.

4.2 FPGA Constraints
Several factors were taken into account when choosing an FPGA to implement our
project. These factors included the, size, cost, ease-of-use, availability, and the
vendor of certain chips. Moreover, once the chip was chosen it placed constraints
on the performance of our neural network. Thus, all the factors listed above place
real restrictions on what is achievable in our project. In the following paragraphs
a detailed analysis of how these factors affected our FPGA choice, and in turn our
neural network, will be given.

The size of our neural net is directly proportional to the amount of logic we have
available for use on the chip. A larger chip (in terms of CLBs/slices) allows us to in-
crease both the size of our neural net and our throughput (number of classifications
per second). By modifying the size of the neural network we can quite possibly im-
prove the accuracy of our speech recognition system. Our hardware-accelerated
algorithm must have the capability of inferencing speech in real-time, therefore the
chip’s throughput must be high enough to achieve this design specification.

To approximate the amount of logic needed to implement the neural network algo-
rithm on an FPGA, a rough prototype was written in Verilog that gave us, at the
least, a solid reference point to begin our search. Additionally, we used research
papers referencing FPGA-based neural networks and their logic usage to deepen
our understanding of their size requirements. We reached the conclusion that logic
utilization is heavily dependent on the desired processing latency and the number
of nodes/layers in the neural network. There is no solid figure or table to deduce
this information from. It would be possible to create a design capable of classifying

59

kilobytes of data every dozen clock cycles, but this would require an enormous, ex-
pensive FPGA. Instead, we took the prototype design and pushed the limits of our
development board, finding that it adequately held a neural network capable of sat-
isfying our design specifications. Additionally, we ran the same prototype through
Quartus’s compilation process to obtain logic utilization figures for Altera chips (our
development board contained a Xilinx chip).

Another important factor was the cost of our FPGA and the cost of getting that
FPGA onto a custom circuit board. Most of the FPGAs we looked at were capable
of implementing a neural network very efficiently, however their costs ranged from
tens of dollars to thousands of dollars. Early on, we chose to look at FPGAs that
came in a quad-flat-package, thus reducing the number of layers necessary for our
PCB (ease-of-use), and subsequently, its costs. Most higher-end FPGAsmake use
of ball-grid-array packaging, a package type that requires very careful soldering
and can lead to errors that are hard to diagnose without x-ray tools. With this
constraint in mind, our selection was limited to low-end, low-cost FPGA solutions,
which was fine given that our development board contained a low-end FPGA that
could effectively implement an algorithm that met our specifications.

From the start it was decided to limit our options to those FPGAs offered by Xilinx
and Altera. We could have chosen other manufacturers such as Lattice and Mi-
crosemi, but having attained most of our FPGA experience using Xilinx and Altera
chips, in addition to the availability of mature ecosystems and support networks sur-
rounding them led us to stick with what was tried and true. After searching heavily,
it was determined that many candidate Altera FPGAs were not readily available,
meaning we would have to wait weeks or months for the factory to produce them
and leave our final PCB construction to the last couple of months of senior design.
Having never designed a PCB before and uncertain of how many iterations of the
design we would need to go through, we opted to choose from Xilinx’s product line,
which had a much higher availability on websites such as Digikey.

In the end, these factors all combined and limited the scope of what was possible
in our project. Had we gone for a middle-tier FPGA in the range of $300-$500, it
would have been possible to classify data using our neural network much faster, al-
lowing us to showcase our capabilities in a more impressive manner. For example,
a neural network on a Xilinx Kintex-7 FPGA would likely be capable of classifying
speech data at a rate hundreds of times faster than needed for real-time speech
recognition. This would mean we could blow through hundreds of hours of a vali-
dation set in a mere fraction of the time and obtain results almost instantly for our
demo in Senior Design II. With the ultimate goal being that we process speech at a
rate fast enough for real-time recognition, these ambitions were discarded and we
instead went with the low-end Xilinx chip that will be described in detail in a later
section.

60

4.3 Algorithmic Constraints
In addition to the constraints addressed in the previous section, the NN will have
its own constraints. Among these contraints are:

• Performance loss due to hardware restrictions

• Size/availability of the training data

In running any algorithms on an FPGA, we have to be efficient when performing
certain operations. This means that certain properties of the network, such as the
activation function, may have to be altered to work on the FPGA. The activation
function, as discussed before, is a sigmoid function:

Sigmoid(X) =
1

1 + e−x

Clearly, this continuous function would be difficult to implement on a digital system.
As discussed in a previous section, we end up using the combinational approach
to approximate the sigmoid on the FPGA. Fortunately, this approximation is quite
efficient and only comes with some performance loss of several percent.

The other constraint that we have is the size and availability of our training data.
Because of the specificity of our task, we will need to curate our own dataset and
perform extra pre-processing on the speech signals to ensure that our performance
does not suffer. Additionally, to offset performance losses and lack of training data,
we have the ability to run multiple epochs on the same training data. The only
downside to this method is the risk of overfitting: if our training data is not sufficiently
diverse, overfitting will prevent the model from generalizing well in response to new
speech signals.

61

5 Firmware, Hardware, and Software Design
Details

5.1 Firmware
5.1.1 Firmware Introduction
Historically, the term firmware was used to refer to software that sat in dedicated
read-only memory. It was typically executed by some embedded system and con-
sidered not nearly as flexible as software. FPGA code has no official definition, and
is termed differently from industry to industry, thus for the purposes of this report,
the digital circuit that is implemented by the FPGA as well as its corresponding
programming files will be referred to as firmware.

Hardware description languages (HDLs) are used to generate digital circuits in a
procedure that begins with register transfer-level netlist synthesis. Once the Ver-
ilog/VHDL describing the circuit is deemed syntactically correct, the chosen devel-
opment environment (for this project that is Xilinx ISE 14.7) creates a netlist based
on the code. This netlist is a low-level virtual digital circuit that describes at the logic
gate level the connections between building blocks such as registers, multiplexers,
decoders, and basic Boolean gates.

With synthesis complete, the IDE takes the final netlist and maps it to the FPGA
through a process termed place and route. Here, the software attempts to “fit” the
netlist onto the FPGA by routing buses between digital logic, ensuring the right
logic is connected to GPIO pins, calculating the final timing of the circuit, and much
more. If the timing of the circuit meets the designer’s specifications and the netlist
meets the size constraints of the FPGA, place and route is said to have completed
successfully. The output of place and route is a file (.hex or .ttf) that is used to
generate a programming file. Once created, this programming file is sent over to
the FPGA and used to actually configure the logic on the chip. The contents of
programming files are indecipherable, proprietary, and vary from vendor to vendor.

In the following sections, the report will focus on the contents of our firmware and
explain the architecture that implements our artificial neural network.

5.1.2 Firmware Architecture
One of our primary goals in this project is to use our hardware-accelerated multi-
layer perceptron neural network to achieve a speech recognition accuracy com-
parable to other, more common solutions (when adjusted for factors such as cost,
power efficiency, and throughput). To this end, we have focused on making our
digital architecture as flexible as possible. Creating our circuit with malleability in
mind makes it easier to achieve our accuracy goals by fine-tuning the size, speed,
or throughput of our neural network, as doing these things only requires modify-
ing parameters in an include file before compilation. These parameters propagate
throughout the design and help generate the amount of logic necessary to reach
certain size and throughput specifications. By implementing our neural network in

62

a highly modular design and parameterizing almost all aspects of these modules,
these changes become painless and do not require rewriting entire blocks of code
should we decide to tweak our network.

Several terms will be used throughout the following sections that refer to the afore-
mentioned neural network parameters. The most important of these are the NUM_-
TILES, SIZE, and LOOP values. The NUM_TILES parameter is self-explanatory,
determining how many tiles are present in the network. This value does not count
the input layer, so a neural network with 4 layers (1 input layer, 2 hidden layers, and
1 output layer) would have a NUM_TILES value of 3. The SIZE factor determines
the number of processing units per tile. This number is directly proportional to the
chip’s logic utilization. Furthermore, increasing it while decreasing the LOOP value
to maintain the same number of nodes in a tile increases the speed of the network.
The LOOP value determines how many node outputs are calculated by each pro-
cessing unit. For example, a SIZE value of 16 and a LOOP value of 64 instructs
the synthesis software to generate 16 processing units, each of which calculate the
output of 64 nodes. Changing the LOOP value does not affect the final logic usage
in any meaningful way. At most, registers that are used to store counts must be
wide enough to accommodate the LOOP value, so changing these registers widths
by several bits affects the circuit’s logic utilization almost imperceptibly. Increasing
the LOOP value increases the latency of the network because many more cycles
are needed to calculate one layer’s outputs. The following equation can be used to
determine the time it takes for the network to classify input data.

Latency (clock cycles) = (X + Y + 1) * Z + 1

Where:
X = Number of nodes in the neural network’s largest tile
Y = SIZE value of the tile following the largest tile
Z = LOOP value of the tile following the largest tile

Additional cycles are added to account for overhead during processing. Only the
parameters of two layers need to be taken into account because of the pipe-lined
nature of the network. Using this equation, it can be determined that for a network
whose largest tile contains 1024 nodes and whose tile following that tile has 16
processing units with a LOOP value of 64 (1024 total nodes), classification can
be expected to occur in 66625 clock cycles. At a reasonable clock frequency of
100 MHz, this number implies that this particular configuration of the network can
classify 1 kB (1024 nodes * 1 byte per node) of input data 1500 times per second.
Of course, there are factors external to the network that can affect processing time,
such as the bandwidth of the communication ports and the ability to distribute the
network weights on a per-cycle basis.

In this way, we create a serial-parallel architecture where the speed and size of our
neural net can be balanced to find a sweet spot that meets our design specifications
while fitting well on our chip.

63

5.1.2.1 Processing Unit
The basic building block of our design is the processing unit (PU). It is used purely
to implement the data path in our neural network. A processing unit takes as input
an n-bit weight (n = 3,4, or 5), 8 bits of input data, a clock, an enable signal, and a
reset signal. Using these signals it is capable of computing the product of the input
weight and input data, adding this product to an existing 16-bit sum, and outputting
the 16-bit sum to the rest of our circuit. This can occur as fast as our design is
clocked, meaning with a somewhat conservative clock rate of 100 MHz this unit
can perform 100 million multiply-accumulate operations per second.

Setting the reset signal high will cause the register holding the accumulated sum
to return to a predefined state. For our purposes, it resets to holding the node bias
value associated with our network. The enable signal (active high) instructs the
processing unit to perform multiply-add operations. In this way, the unit is purely a
slave of a control logic circuit.

The processing unit does not use a multiplier anywhere. These are expensive in
terms of logic utilization (logic is a limited resource on an FPGA) and by implement-
ing our neural network using only n-bit weights (n = 3,4, or 5) weights we were able
to remove the need for one at all. Depending on the width of the weights, the arith-
metic behaviour of the processing unit can change. For example, 3-bit weights, due
to their sign-magnitude representation, are capable of representing integer values
in the range of -3 to 3, inclusive. Thus, we only had to take these multiplication fac-
tors into account. A weight of 0 sets the product to 0, a weight of 1 sets the product
to the input data, a weight of 2 sets the product to the input data left-shifted once,
and a weight of 3 sets the product to the sum of the input data and the input data
left-shifted once. The process is exactly the same for negative weights, except
that the 2’s complement of the product is taken before being added to the exist-
ing sum. This concept is extended to 4 and 5 bit weights that represent values in
pre-determined ranges. In all cases, multiplications and divisions are implemented
using bit-shifts and additions. For example, in our 4-bit weight representation the
binary value ”0100” instructs the PU to perform a MAC operation with a multiplica-
tion factor of 0.75. This is done by left shifting the input value once and twice and
then summing the resultant bit-shifted values.

To elaborate on the example above, the weights in our system are represented
symbolically, rather than literally. For example, the binary value ”0100” can denote
the decimal value 4, 0.5, or 0.25 depending on the number of fractional bits. We
found that most weights were distributed pretty tightly around 0 and wanted to have
the majority of the weights fall in the range [-0.5,5] while still having the ability to
multiply by 1 or 1.5. To accomplish this we used the symbolic notation mentioned
above which allowed us to represent weights non-linearly.

To sum up the operation of a processing unit, it first computes the product of the
weight and input data using the process outlined in the previous paragraph, fol-
lowed by extending the resulting 8-bit product to fit a 16-bit register, . It then com-
putes the 2’s complement of this product if necessary (if the weight is negative, i.e.

64

the sign bit of the weight is set high) and adds it to a pre-existing sum. A register-
transfer level depiction of a processing unit can be seen in Figure 34 below. Note
that the figure shows a slightly simplified version of the digital circuit.

Figure 34: Processing Unit Depicted at the Register-Transfer Level

65

5.1.2.2 Combinational Approximation of the Sigmoid Func-
tion

Equally as important as the processing unit is the sigmoid circuit which takes the
output of the processing units and applies nonlinearity in the form of the sigmoid
function. This is an essential part of our neural network. We used the a sigmoid
approximation based on the sig_337p proposed by M.T. Tommiska in his paper “Ef-
ficient digital implementation of the sigmoid function for reprogrammable logic.” The
sig_337p is a purely combinational approximation, which according to Tommiska
has an average deviation from the true sigmoid function of 0.17% and a maximum
deviation of 0.39%.

After extensive testing, we found that using sig_337p introduced toomuch error into
the forward pass computation. The source of this error was the truncation of the
output of the processing units to fit the input of the sigmoid approximation function.
By truncating bits, a non-negligible amount of precision was lost, causing small
discrepancies between input and output values. These errors would accumulate
after hundreds, if not thousands, of additions and ultimately lead to an output layer
value that deviated up to 20 percent from the expected value.

To solve this issue, I sought to create a similar sigmoid approximation function with
a wider input and more precise output. Using a MATLAB implementation of the
Quinne-McCluskey logic minimization algorithm and some C++ code that mapped
fixed-point inputs to fixed-points outputs I generated the AND-OR logic necessary to
create sig_368p. Sig_368 combinationally mapped 10 input bits (1 sign, 3 integer,
and 6 fractional bits) to 8 output bits. The addition of the 3 bits of input precision
helped lower the output layer deviation to within a negligible range (0.3-0.4 percent).
In addition, the output bus has the advantage of fitting well with our existing 8-bit bus
widths. One disadvantage of increasing the width of the input bus is the complexity
of the logic necessary to implement a more accurate mapping. The number of
required AND gates increased by a factor of 6, though the required logic was still
an extremely small portion of the FPGA’s finite logic resources. The more important
consideration was the increase of the propagation delay in our circuit. Suddenly,
sig_368p included nearly all the largest combinational delays in our datapath. To
solve this issue, we simply registered the input and output of the sigmoid function,
allowing us to keep clocking our logic at 100 MHz.

Sig_368 can be implemented as a sum-of-products, meaning a simple AND array
feeding an OR array is enough to form the combinational circuit. Nevertheless,
there are several nuances that have to be taken into consideration when using sig_-
368p. The letter “p” implies that only positive input values are mapped to output
values, thus if the sign bit of the input is negative, its two’s complement is taken
before being transferred to the AND-OR planes. Similarly, the output of the AND-
OR planes is subtracted from the value 1 if the sign-bit of the input is negative.
In this way, logic utilization of the circuit is halved while maintaining the ability to
approximate the sigmoid function for both positive and negative input values. It is
important to note that input data is assumed to be in the fixed-point format s3.6,

66

where there is 1 sign bit, 3 integer bits, and 6 fractional bits. Data is output in the
fixed-point format 0.8, implying there are 8 fractional bits. This is optimal as the
sigmoid function has outputs in the range (0,1).

Below, Figure 35 contains the Boolean logic necessary to implement sig_337p as
a sum-of-products. A p corresponds to the output of an AND gate and an s to
the output of an OR gate. Note that s[6] is 1 because sig_337p calculates values
only for positive input values, therefore the output value is always at least 0.5.
A complete Verilog description of sig_368 can be found on DeepGate’s GitHub
repository.

Figure 35: Logic Required to Implement Sigmoid Function

67

5.1.2.3 Tile Data Path Structure
Several processing units, a multiplexer, a combinational sigmoid circuit, an embed-
ded RAM block, and some overhead logic compose the data path of what is called
a tile in our design. Tiles are analogous to layers in a neural network, with the ex-
ception that the processing units they are composed of can be used to compute the
output of multiple nodes. A tile takes as input that same signals a processing unit
does along with an input “transfer” signal, and an output “dataWrite” signal used
to write processing unit output to memory. Furthermore, the bus transferring the
network weights from memory is widened to allow transfer of the weights for all the
processing units comprising the tile in one clock cycle. The enable, reset, and input
data bus signals are mapped directly to the processing units in the tile.

Additionally, the number of processing units in a tile is flexible, allowing us to modify
the size of our network by merely changing a parameter in an include file before
compilation begins (size cannot be changed when the FPGA is programmed). In
any case, the upper byte of the output of each processing unit is sent to amultiplexer
whose selector is wired to an internal register that increments until a control signal
is set low. The output of this multiplexer forms the input of the tile’s combinational
sigmoid circuit. This setup allows us to compute the sigmoid approximation of one
processing unit per clock cycle. While it would be possible to compute the sigmoid
for all the processing units in a tile in one cycle, it has large logic utilization costs
as data buses must be widened immensely. This way, while slower, keeps the data
bus at a width of 8 bits while still being fast enough for our purposes.

The transfer input signal to the tile data path commands the tile to begin writing the
output of the sigmoid circuit to a RAM block. A control unit separate from the data
path ensures that this signal is high only for a number of cycles equal to the number
of processing units in the tile (since the output of only one PU is written at a time).
While the transfer signal is high, the tile’s data path sets the “dataWrite” signal high
and sends each PU output through the multiplexer to the sigmoid circuit, whose
output is wired to the input of the aforementioned RAM block. The “dataWrite”
signal serves as a write enable signal to this RAM.

Placing RAM blocks at the output of the sigmoid circuit, and essentially the “layer,”
allows data to be pipelined between tiles. To facilitate this pipelining, the RAM block
is able to hold data corresponding to twice the amount of nodes in the tile. For ex-
ample, if a tile has 8 processing units and each processing unit computes the output
of 2 nodes, the RAM is capable of storing 32 node values at once. The purpose of
this is to allow the tile to work on new data from the tile preceding it without over-
writing the values it has computed previously. To achieve this, each RAM block
has a small controller that tracks which sector (first or second) has been written
by the tile or read by the following tile and adjusts the read and write addresses
accordingly. Furthermore, the controller is aware of the number of iterations the
following tile needs to compute its outputs and does not allow the tile to overwrite
data unless the amount of memory read loops reaches the aforementioned num-
ber of iterations. The same controller communicates with the tile’s main controller,

68

which will be elaborated upon in the following section, using a signal that indicates if
there is data available to be worked upon and another signal that indicates whether
or not the RAM is full. Thus the rest of the data path is unaware of these signals
and merely serves as a number crunching machine. Structuring our circuit this way
allows us to keep the data and control logic completely separate and easy to modify
should the need arise.

We had two options for storing our tile’s output data, block RAM and distributed
RAM. Using distributed RAM implies giving up logic resources that could be used
for the other portions of our data path and control structures because of the fact
that Xilinx’s software maps our memory to slices and flip-flops. Quartus works
similarly, mapping our RAM to ALMs that could be better used elsewhere. Taking
advantage of block RAM ensures we are using dedicated memory resources on
the FPGA. These are not reconfigurable in the sense that they are printed onto the
silicon wafer during manufacturing. Their bus widths and read/write timings can
be modified within certain constraints but they cannot be used to implement other
general-purpose digital logic. Therefore, using block RAM allowed us to keep the
logic utilization on the chip much lower than would be possible using distributed
RAM.

The overall structure of a single tile can be seen in Figure 36. Some minor control
signals are missing but the architecture and functionality is depicted accurately.

69

Figure 36: Simplified Tile Architecture

5.1.2.4 Tile Control Structure
Each tile has a control unit that directs the flow of data through its data path. Es-
sentially, this circuit is a state machine whose output depends on the size of the
tile it belongs to, the size of the previous tile in the network, and the signals given
by the embedded RAM controllers of the current and previous tiles. To explain the
operation of this control logic and paint a more concise picture of the operation of
our neural network, the following paragraphs will go through each state in detail.

A tile control unit always begins in, or is reset to, the READY state. In this state, the
control logic ensures that the tile “idles” in the sense that no data is being pumped
through its processing units and nothing is being written to the tile’s memory. The
state machine remains in this state until the “dataAvailable” signal of the RAM block
in the previous tile indicates that the previous tile has successfully completed pro-
cessing.

70

Following this, the controller immediately enters the PROCESS state, where data
is read from the previous RAM block and sent through the processing units com-
prising the tiles in parallel. In this state, the enable signal wired to the inputs of the
processing units is set high for a number of cycles equal to the number of nodes
(not PUs) in the previous tile. This has the effect of sending the output of each
node in the previous layer through each processing unit in the current layer. While
this is occurring the PUs are taking these node values, multiplying them by their
associated weights, and accumulating the sums.

Once each node value in the previous layer has been passed through the current
layer, the control state machine enters the TRANSFER state, where the tile’s nodes
are reset to their bias values and the final sums calculated by the processing units
are written to the tile’s RAM. This is accomplished by setting the transfer signal high
(the same one mentioned in the previous section) for a number of cycles equal to
the number of processing units in the tile. Here the LOOP value of the tile comes
into play. If the LOOP value is greater than 1, it implies each processing unit is to
calculate the output of multiple nodes. The state machine has been tracking the
number of iterations through the PROCESS-TRANSFER states and if the number
is less than the LOOP value of the tile, the state machine re-enters the PROCESS
state. If the number of iterations does, in fact, match the LOOP value of the tile,
the state machine moves into the final state.

In the WAIT state, the circuit monitors the signal being sent from the tile’s RAM
block indicating whether or not is full. Should the RAM be at maximum capacity,
the circuit does exactly what the state’s name implies and waits for the following tile
in the network to finish utilizing the data in at least one of the sectors in the RAM.
As soon as this “ramFull” signal is set low once again, the state machine re-enters
the READY state.

At any moment, an input reset signal controlled by a module higher up in the ar-
chitecture’s hierarchy can send the control unit into the READY state, resetting all
internal registers and signals in the process. Figure 37 is state machine diagram
which is a simplified depiction of the control circuit’s functionality.

71

Figure 37: Tile Control Finite State Machine Diagram

5.1.2.5 Tile Pipeline
Several tiles are cascaded to form the tile pipeline. This is a separate module in our
design but doesn’t serve much more of a purpose than acting as simple glue logic.
The number of tiles instantiated in this module is determined by a parameter in
the top level include file called NUM_TILES. This pipeline module ensures signals
are connected correctly between the layers while breaking out critical signals that
interact with entities such as the master controller to a top level interface. Further-
more, it serves as a crucial interconnect between a tile’s control, data path, and
RAM buffer, providing a structural description of the connections between these
modules.

This circuit connects the output data bus of a previous tile’s RAM buffer to the
input of the following tile. The only exception is the first tile in the chain, whose
input comes from a module higher up in the architecture’s hierarchy. Also unique
to the first tile is the breakout of the tile’s idle signal to the top level. Doing this

72

allows the master controller to determine when it is okay to send data through the
network, preventing corruption while maximizing throughput (the controller can start
pumping data through the pipeline on the clock edge it sees the idle signal is high).
Additionally, each tile’s dataAvailable input is wired to the dataAvailable output of
the RAM in the tile preceding it. The only obvious exception is the first tile, whose
dataAvailable input is sent to the top of the hierarchy to be controlled by the same
controller that monitors its idle signal.

Each tile except for the last has its own pipelining RAM, whose functionality is given
in the previous section. The last tile does not require this buffer because its output
data is ready to be sent over the serial communication ports as soon as it becomes
available.

It is in this pipelining module that the values such as LOOP and SIZE specific to
a tile are used to generate the correct the number of PUs in addition to slightly
tweaking the tile’s control logic. This is done using module instance parameter
assignment, ensuring our circuit’s flexibility.

Modules higher up in the hierarchy only see the control signals such as ”tileIdle”
and “networkDataReady” that instruct them when it is okay to push data through
for classification and when the results of the network are ready to be extracted. In
essence, this module becomes a black box that can be ported to any FPGA, so long
as the correct weight distribution mechanisms are employed and a communication
protocol is implemented that allows data to be transferred from and to the chip.

A high level overview of the circuit is visible in Figure 38. Some lesser control
signals are not visible, but its general operation can be inferred and the structural
connections between the component modules are accurate. Up until now, the mas-
ter and memory controllers have not been described. In the subsequent sections
their operation will be explained.

73

Figure 38: DeepGate Digital Architecture Overview

5.1.2.6 Weight Distribution
There exist two scenarios for the generation of our firmware. In the first case, the
neural network is sufficiently small enough that the weights between the nodes
can be stored using on-chip block RAM entirely. This allows us to forego using an
external SDRAM chip and decreases the latency of the pipeline stages as weights
do not need to be transferred from an external memory source before computation
begins. Moreover, memory can be preloaded during FPGA programming in this
scenario using generated .txt files. This means we wouldn’t have to write extra
software that transferred weights to the board post-programming. In the second
case, the amount of memory necessary to contain our weights cannot be satisfied
by the Spartan-6’s block RAM, meaning an SDRAM chip needs to be used and
additional logic added to implement a memory controller, load weights from the
chip to an FPGA-side FIFO, and constrain the speed of the data path to the speed
at which data can be transferred from the SDRAM. Ideally, our algorithm can be
implemented within the bounds of scenario one. Since the size of the network is
tentative, however, we will opt to build our design around an SDRAM chip. If it turns
out that the network is too small to make use of the chip, then it can be used for
storing input data and classification results (acting as a buffer between the PC and

74

the FPGA).

A block RAM segment is inferred for each tile that is capable of storing the weights
that quantify the relationship between that tile and the layer before it. This block
RAM, for scenario one above, has a size of PREV_TILE_SIZE · PREV_TILE_-
LOOP · TILE_SIZE · TILE_LOOP · 3 (each weight is represented using 3 bits). It is
easy to see that then that small increases in layer size can heavily influence block
RAM usage. Assuming scenario one, however, block RAM usage is not a limiting
factor in the circuit’s performance. For both scenarios, weights need to be stored in
a specific arrangement to ensure the correct flow of data through the pipeline. This
arrangement is dependent on the SIZE and LOOP parameters of each tile as well
as the way node outputs are computed. Essentially, because the outputs of SIZE
number of nodes are calculated in parallel a LOOP number of times, weights must
be stored in memory in the example arrangement depicted in Figure 39 below.

Figure 39: Example Weight Arrangement Scheme in Memory

The figure above shows the weight memory arrangement for the second layer of
a network with an input layer (first layer) size of 3 nodes and a second layer size
of 8 nodes (TILE_SIZE = 4, TILE_LOOP = 2 for this layer). Subscripts are used
to denote the weight between specific nodes. The weight between previous layer
node i, and present layer node j is represented by wi,j. The table assumes that each
memory address holds one weight (is 3 bits wide). During the PROCESS state,
weights would be read from an address that is incremented by 4 every clock cycle
for a number of clock cycles equal to the size of the input layer. This process repeats
a TILE_LOOP number of times (when the control finite state machine moves out of
the TRANSFER state). This scheme remains the same for every layer except the
first. The RAM size is automatically modified by the synthesis tool to match each
individual tile size; no manual editing of bus widths or array depths is needed.

In addition, this arrangement remains the same for either scenario. In the first case,
the memory blocks would be read-only as they contain everything needed at the

75

start of the run-time. In the case that an SDRAM chip is needed, the memory would
require a write port that allowed external logic to transfer weights from outside the
FPGA.

The weight arrangement and distribution scheme becomes slightly more compli-
cated when interfacing with the external RAM chip on our custom board. This is
because the SDRAM’s data bus width of 8 does not match up well with our 3-bit
weights. In this case, the weight RAMs associated with each layer in the network
must know the index of the MSB in the last weight to be loaded from external mem-
ory. For example, if a layer has 5 processing units, it needs a 15-bit weight bus
and therfore 2 bytes read from external memory to load one address in the the
layer’s weight RAM. However, the MSB bit of the second byte is unused because
the MSB of the last weight is located on bit 6, not bit 7. The weight RAM is given
this information pre-synthesis and is capable of automatically discarding unused
bits. Furthermore, the concept above is generalized to include weights of arbitrary
widths.

Another special consideration occurs if the weight memory needs to be divided
between on-chip and off-chip RAM. For example, consider a network configuration
that requires 8190 B of total weight memory for one layer and can only spare 4095
B of on-chip RAM. In this scenario, there are 2 4095 B blocks of weights, one
of which is loaded at a time on the FPGA. The SDRAM controller performs burst
reads, meaning 4 bytes are read at once to improve read latency. In this case,
since the size of the blocks falls short of a multiple of 4 bytes by 1 byte, 1 byte of
padding needs to be added after each block. Different network configurations and
memory divisions might require different amounts of padding bytes to be added to
the weight memory.

All the scenarios above are pre-computed and dealt with by a C++ program that
reads the pre-trained network weights from .csv files and transfers them to a com-
pact binary file that can be easily uploaded to the FPGA. This program can be found
on DeepGate’s GitHub repository.

5.1.2.7 SPI Slave
The development board implements communication between the FPGA and on-
board microcontroller using an SPI. In this configuration, the FPGA is the slave to
avoid having the microcontroller constantly checking the to see if the FPGA has set
the slave-select line.

The architecture of the slave is extremely basic. It utilizes an 8-bit shift register
that replaces the least-significant bit every on every rising edge of the system clock
(SCK), assuming that slave-select is set. The slave is hardcoded so that CPOL
= 0 and CPHA = 0. That is, the clock polarity is set so that the base value of the
clock is zero. A CPHA value of 0 configures the slave to read data on the rising
edge of the clock and output data on the falling edge. There are many possible SPI
implementations, some of which allow the user to configure the clock polarity and
clock phase arbitrarily (even during run-time). For the sake of keeping our logic

76

utilization low we hard-code these values.

Currently we are achieving read/write speeds with the microcontroller of around 47
kB/s. By removing the microcontroller and communicating directly with the JTAG-
SMT chip we plan to use, we can most likely increase the data rate by an order of
magnitude. We aim to keep this slave communication setup for our final product.

5.1.2.8 Clock
Our design is largely composed of synchronous sequential logic, thus the need for
a clock is non-negotiable. Since the Spartan-6 does not have a user-accessible in-
ternal oscillator, the clock signal must be sourced from a crystal oscillator external
to the FPGA. This externally-generated clock arrives at an input pin and is routed
to a phase-locked loop hard block that generates the system clock at a desired fre-
quency. The generated clock is propagated throughout the die using special global
clocking interconnects, limiting clock skew and increasing system performance. Xil-
inx provides the PLL logic and analog electronics directly on the silicon die, thus
implementing Xilinx’s PLL_ADV primitive in our design requires no additional logic
resources.

A preliminary timing analysis shows that our Fmax falls somewhere around 112
MHz on a Spartan-6 FPGA with a speed grade of -2. Since our final design will
make use of a -3 speed grade Spartan-6, we hope to increase the maximum fre-
quency by at least half a dozen MHz.

5.1.3 Automatic Include File Generation
The size of our neural network is determined by several arrays of parameters in a
Verilog include file. The values in these arrays determine the number of processing
units and loop values of each tile as well as the bias value present in the nodes upon
system start or reset. Furthermore, several arrays are present that are indexed to
determine the size/loop values of tiles preceding and following the tile currently be-
ing synthesized. These extra arrays are used in place of the main size/loop arrays
as Verilog throws errors if an array index is out of bounds (i.e. size/loop parameters
don’t exist for the layer before the input layer and the layer after the output layer).
Finally, several parameters are needed to describe the memory architecture of the
system. These indicate where in the SDRAM’s memory range the weights for the
different layers are located as well as the size of each division.

The include file and all the aforementioned parameters are all automatically gen-
erated by a C++ program that takes 3 arrays as input. One array describes the
number of processing units in each layer, the next the loop value of each layer,
and the last array includes the memory division values. The MEM_DIVIDE value
determines how partitioned the weight memory for each layer is. For example, a
MEM_DIVIDE value of 1 implies that all the weight values can be stored on-chip
and a value of 2 splits the weight memory for a certain layer into 2 divisions, where
only 1 division is on-chip at a time. MEM_DIVIDE must have a value such that it
allows clean partitioning of the memory (you can’t divide an odd number of bytes by

77

2). The C++ program takes these 3 arrays and automatically generates the include
file as well as the weight memory file to be uploaded to the FPGA.

5.1.4 Physical Pinout
Signals in our design are routed to general purpose I/O pins that allow the FPGA to
communicate with its environment. These pins are connected to specific compo-
nents on our circuit board, therefore, ensuring that the correct internal signals are
routed to the correct GPIO is a major part of the design process.

In ISE, this can be done using Xilinx’s proprietary PlanAhead software that auto-
matically generates the .ucf files used by the place and route process to determine
the design’s pinout. For all our signals, we use the LVTTL I/O standard and the
“fast” slew rate designation to ensure that communication with the JTAG/SDRAM
chips occurs at the fastest possible speed.

Certain internal signals must be routed to the SDRAM chips and on-board oscillator
to ensure correct operation of the system. However, the large amount of LEDs,
buttons, and header pins can be routed to any signal, allowing us to debug our
system in multiple ways. For example, using the LEDs we can display the state of
a finite state machine in our design to determine if it is getting stuck. The buttons
can also serve as reset/start buttons. Header pins allow us to add additional signal
debugging functionality and communication ports (SPI) to our design if for some
reason the design is not working as intended.

5.2 Hardware
5.2.1 PCB Design Overview
There are always many decisions to be made when designing and laying out a
PCB. In the beginning we knew we wanted to do a project that utilized FPGA tech-
nology. From there finding all the peripheral components, application components
and power source components was next. After a list of required parts necessary
for proper function was compiled a block diagram could be made to get an idea
of the PCB components and connections. The block diagram of the PCB for our
application is seen in Figure 40 below. It includes all of the necessary components,
voltage levels and highlights the connections between specific components.

78

Figure 40: PCB Block Diagram

5.2.2 Schematics
The custom PCB schematic has been designed using EagleCAD.See Figures 41
through 44 different components of the schematic layout of the prototype PCB.
The design is spread across two pages. The first page of the schematic is split up
below in figures 41 and 42 on pages 80 and 81 respectively. The power connector,
power LED, application LEDs and some capacitor banks are on Figure 41. The
power voltage regulators and the remaining capacitor banks are in Figure 42. The
second page of the schematics are below in Figures 43 and 44 on pages 82 and 83
respectively. The SDRAM and part of the FPGA are in Figure 43 of the schematics.
The rest of the FPGA, JTAG and clock are on the schematics in Figure 44.

79

Figure 41: PCB Schematic

80

Figure 42: PCB Voltage Regulators

81

Figure 43: PCB Schematic Page 3

82

Figure 44: PCB Schematic Page 4

83

5.2.3 Board Layout
The layout of the board is just as important as the schematics. Laying out the
board is essential to the components chosen working properly together. According
to the data sheet for the FPGA and SDRAM a certain number, value and position of
capacitors are needed connected to the supply voltages. These required capacitors
are necessary for these two components so that the voltages are decoupled and
not varying. The voltage regulators create heat when bringing the voltage levels
down, there are heat sink pads created for the heat to dissipate across, instead of
the heat affecting components nearby. Since this board has an FPGA a four layer
board design was chosen. This enables signal to run across layer one and four so
that two other layers can be reserved for power and ground. This allows vias to
access a value on one out of 3 other layers. A via is a small hole that connects
one layer to another though every layer on a board. The layout including all of the
components and components names can be seen in Figure 45.

Figure 45: Layout and Components

The ground layer being on layer two, seen in blue in Figure 46, allows vias to reach
down a layer for ground instead of needing to cross the surface. This can be a
problem with a crowded surface especially around the FPAG where the pins are
really close together.

84

Figure 46: Layout Ground Layer

The power layer is on layer three from the top, this layer is in red on Figure 47 below.
This allows the components on the top layer, layer one, to reach power easily. This
allows less vias and a less crowded signal layers on the board.

Figure 47: Layout Power Layer

85

5.2.4 Components and Power
5.2.4.1 PCB Fabrication
A printed circuit board is made up of several layers. These details on layering are
covered in Section 3.2.5.5 Layering on page 34. This section aims to expand further
on how the board is eventually turned into a working piece of electronic equipment
after all the layers are put together. As stated earlier the board is complex there
are layers and ground and power planes within the board that are not on the top
or bottom surface. With signal layers on the top and bottom layer of the board.
Figure 48 below shows the board after the components have been assembled onto
it. Most of the main components are labeled. The assembly of the board had to
be done by a machine to ensure that there were no accidental connections made
between the very close pins of the FPGA or SDRAM.

Figure 48: Fabricated Board Front

5.2.4.2 FPGA
An FPGA is a very complex integrated circuit. In Section 3.2.2 Field-Programmable
Gate Array starting on page 15 and continuing until 21 the complex internal struc-
ture of the FPGA is explained. This includes explanations of logic blocks, hard

86

blocks and routing. FPGAs are faster than CPUs running a neural network. FPGA
also conserves more power than a GPU.

Figure 49: FPGA Component Specification Comparisons for Part Selection

From Table 49, above, there are similarities and differences between these FPGAs.
Four our application we need a Lead Low Plastic Quad Flat Pack Package (LQFP)
that way we can solder it ourselves if we need to. We have a budget of $1,000
for the entire project so we have to be consensus about the type of FPGA we get
especially since we will be getting several backups. They are almost impossible
to remove from the board once they are soldered on. So if anything goes wrong
on any other part of the board and the board needs to be scrapped we cannot
afford to spend more than $50 for a single FPGA chip The goal being to keep it
under $20. We wanted to be able to get the most complex FPGA for the money.
From Table 49, above, FPGA 1 has an impressive amount of I/O pins but for our
application we don’t need that many. This FPGA is expensive because of that, and
also does not have a LQFP package for soldering. The price and package type
takes FPGA 1 out of the FPGA possibilities for our project. FPGA 2 has only 35 I/O
pins and it also does not have the LQFP package for mounting. Not meeting these
two specification requirements take this FPGA out of contention as well. FPGA 3
is the best option out of the three for price and number of I/O pins. Even better, it
has the LQPF mounting package.

In Section 3.2.2 Field-Programmable Gate Array starting on page 21 the Xilinx
Spartan-6 family of FPGAs are explained in detail. We went with one of the smaller
FPGAs that came in the LQFP package but we were able to select the fastest speed
grade available from Xilinx FPGAs.

5.2.4.3 SDRAM
Section 3.2.4 SDRAM talks about basic explanation of RAM memory, its value to
the project, how DRAM works and its difference from RAM. Also, how SDRAM
works and its difference from DRAM. This section explains DRAM versus SRAM,
technical features of SDRAM, and user interface information. SDRAM will be very
beneficial to our project. It will hold memory storage, that is its sole purpose, which
will aid in the speed of the project’s execution. The FPGA will be able to access

87

the SDRAM for information which will be more efficient and there will be available
storage,

Figure 50: SDRAM Component Specification Comparisons for Part Selection

As seen in Table 50, above, there are three different SDRAM chips to choose from.
SDRAM 1 has a fairly large memory size, which is desired, but its package type is
the solder balls. We are avoiding solder ball package types because the gull wing
mounting package is easier to handle. SDRAM 2 has a parallel interface package
but it is too small to store a substantial amount of memory. We want the largest
memory size available, which is SDRAM 3. It is also not that expensive so it is
worth it to have more available memory for the FPGA to use.

5.2.4.4 JTAG
The definition of JTAG technology is found in Section 3.2.3.1 on page 22. This
section also describes how the JTAG works and the four main logic signals that will
be reviewed and expanded on in this section. Along with connectivity testing, the
JTAG, supports boundary-scan architecture. Boundary-scan architecture allows
different user defined instructions and are able to load the configuration data directly
to the FPGA and connected memories. First, three different JTAG applications will
be analyzed to determine the appropriate JTAG component for our application.

88

Figure 51: JTAG Component Specification Comparisons for Part Selection

They all have a USB PC interface, SPI support, 4-wire JTAG and a Vref range of
1.8V to 5V. From Table 51, above, the comparisons show that the boards differ
in the category of maximum speed, mounting type and 2-Wire JTAG application
ability. JTAG-SMT2-NC is the same board as the one above it except it does not
comewith the USB connector hardware. This USB connector is essential to running
the programming and tests of the FPGA from the PC. JTAG-USB is attached to a
cable making it ineligible for our application.

With careful evaluation of the specifications, we have decided to use the Diligent
JTAG-SMT2 as this surface-mount programmingmodule best fits our current needs.
This part is a fully self-contained and easily accessed through Xilinx tools. It re-
quires a separate Vref supply for the JTAG signals and uses 3.3V power supply.
It also has the advantage of using 24mA, three-state buffers that support fast bus
speeds and a reasonable signal voltage range. It also utilizes a micro-AB USB
connector. Permission Pending From Diligent for Reprinting.

Figure 52: JTAG-SMT2 Component
Board Top

Figure 53: JTAG-SMT2 Component
Board Bottom

89

This JTAG-SMT2, in Figure 52 and 53 above, sold by Diligent has several specifi-
cations and requirements for mounting it to a PCB. The requirements for the best
results of the JTAG-SMT2 performance include mounting the JTAG near the edge
of the PCB over a ground plane. Diligent recommends keeping the area beneath
the JTAG clear. Even though traces can be run underneath, per the guide, for our
design we will take all precautions and reroute them around the module. Another
thing to keep in mind during the PCB design is to limit impedance between the
JTAG-SMT2 and the FPGA below 100 Ohms to operate the JTAG at maximum
speed, which is what we want. One of the reasons the JTAG was chosen over a
microcontroller was because it will be able to achieve a faster data rate than the SPI
serial communication that would be used between the microcontroller and FPGA.
From Section 3.2.3.5SPI the data rate between the microcontroller and FPGA with
SPI communication was 46.1 KB/s. The high-speed USB2 port can drive the JTAG
bus between the JTAG and the FPGA to a data rate of up to 30MB/s. That is more
than 650 times the data rate between the microcontroller and the FPGA.

The FPGA architecture includes all the elements required to work with the JTAG.
These elements include the TAP, TAP controller, the Instruction register, the in-
struction decoder, the boundary-scan register and the BYPASS register. The iden-
tification register is supported for 32-Bits. All of this architecture within the FPGA
complies with the IEEE Std1149.1. Before discussing the four main logic signals
it is important to explain the Test Access Port (TAP) first. These four main logic
signals are three input pins and one output pin and they control the boundary-scan
TAP controller. The TAP controller is a state machine with 16 different states. All
of the 4 input and output signals control how the data moves through the TAP state
machine. In Figure 54 below, the diagram of 16-state TAP finite state machine’s
transitions can be seen. A transition between the states only takes place when the
TCK is on its rising edge value. The two columns of seven states each represent
two different types of paths. The column on the left is the Datapath and the data
registers operate in the states which names end in “DR.” The column on the right
is the Instruction Path and their registers operate in the states whose names end
in “IR.”

90

Figure 54: TAP Controller’s Finite 16-State Machine Transitions - Permission
Pending From Diligent for Picture Use

As mentioned earlier the four main logic signals used in the JTAG bus are:

1. Test Mode Select (TMS)

2. Test Data In (TDI)

3. Test Data Out (TDO)

4. Test Clock (TCK)

Since only one data line for each of these signals is available the protocol for the
transfer of data is serial. The TMS pin controls the operation of the test logic. The
state or value of the TMS pin on the rising edge of the clock governs the sequence
of state transitions. The TMS pin has an internal pull up resistor so that when there
is no input the input stays high. The TDI pin receives input data in the form of
serial protocol. This serial data is either sent to the test data registers or instruction

91

register. This is controlled by the state of the TAP controller. The TDI pin also has
an internal pull-up resistor so that the input is high unless there is an outside input.
The TDO pin outputs the data in serial form from one of the registers, either the test
data register or the instruction register. The decision between the two is made by
the state of the TAP controller. The TDO pin also has a high-impedance, which is
something to take into account when adding the JTAG to the PCB.

Lastly, the TCK is not actually a clock, it is used to load the test mode data from the
TMS and TMI pins. This only happens when the TCK is on the rising edge. During
the falling edge of the TCK the test clock outputs the test data on the TDO pin. All
of these reasons explain why it is a great choice for interfacing the programming of
the FPGA and that is why we selected the JTAG-SMT2 for our PCB board.

5.2.4.5 LED
There is an abundance of Light-Emitting Diodes (LEDs) to chose from with different
specifications used in various applications. There are several different types of LED
packages, two of them are applicable to our project, Dual In-Line Package (DIP)
and Surface Mount Device (SMD). For SMD there are different sizes to choose
from. Also for each mounting type there is a Millicandela Rating.

There is an abundance of Light-Emitting Diodes (LEDs) to choose from with differ-
ent specifications used in various applications. There are several different types
of LED packages, two of them are applicable to our project, Dual In-Line Pack-
age (DIP) and Surface Mount Device (SMD). For SMD there are different size pad
specifications to choose from. Also for each led types there is a Millicandela Rating.

The two LED mounting types that would meet our specifications are both DIP or
through-hole mount and SMD or surface mount. The DIP LED has two leads com-
ing off of the epoxy encasing. The SMD is flat and has connections on both ends
that match up to contact pads on the PCB. As seen in the figures, the SMD LED is
considerably smaller and more compact. The size difference along with not being
a through-hole mounted part makes it a favorable choice of LED. The benefit of
the SMD LED in regards to the way its mounted saves considerably more space,
costs less to create drilled contact holes on a PCB and is quicker to install from a
manufacturing point of view. The SMD LED can be installed with a reel and a pick
and place machine. These machines can install hundreds of small surface mount
parts in minutes. SMD LEDs seem to be better in every way, except for if the board
may be under mechanical stress. The DIP LEDs have through-hole connections
which make them more secure because they have to be soldered from both sides
of the board.

The size specifications for the SMD LEDs are related to the dimensions of the part.
This is applicable for all SMD parts not just the LEDs. The size of the package
is indicated by a numerical code. For example, 0805, this is an Imperial code,
which represents a length of .08” and a width of .05”. The imperial code used to
be used the most often to specify a SMD size but in modern PCB design metric
units (mm) are used. For our project we will be selecting LEDs based off of the

92

imperial code. There are several sizes of common SMD LEDs to use. Initially we
chose 0805 which would work well. In case we decide the brightness of the LEDs
are not sufficient in that size package an increase in size would allow for more
luminous LED options. The increase in package size allows a larger range of LED
brightness to select from, the only downfall is that they have an increased forward
voltage, which requires a sufficient voltage supply to the LED.

The brightness of the LED can be controlled by the current passing through the
LED. The current through the LED is controlled by the supply voltage value from
the FPGA and the value of the current limiting resistor. The current limiting resistor
is very important in keeping the LED from exceeding the maximum recommended
current draw and to limit the current draw from the FPGA pin.The application LEDs
in the design will have a supply voltage of 3.3V from FPGA I/O pins. Will be using
different colored LEDs and the forward voltage of different colors changes with the
millicandela rating. Only certain colors were available below 3V. The colors of LEDs
to be used will be blue, green, red and white. See Resistors section below for an
expanded definition of forward voltage.

The design will have four different color LEDs and two of the colors will be in different
sizes. The reasoning for the different colors is to use a certain color for a certain
function of the PCB. The different sizes were not necessary but was desired. The
smaller indicator LEDs that are not a part of the applications of the project should not
be the same size so that separation of function and application is easily visible. After
these preferences were selected the next step was narrowing the LED selection
even further.

There were thousands of LEDs to choose from with different qualities such as size,
luminosity, forward voltage and color. Table 55 below shows three different viable
LEDs for this project.

Figure 55: LED Component Specification Comparisons for Part Selection

As seen in Table 55, all of the LEDs are very different from each other. The LED
1 was one of the colors and sizes desired but it was not bright enough to be able
to see clearly from a couple of feet away. LED 2 was also a color desired but the
mounting type was SMD right angle and that did not align with the mounting type
selected. LED 3 was a perfect option. It was the preferred package size, luminosity
and color.

For the project LED 3 was selected as an indicator LED. It will be used to establish

93

the board is turned on by being set to steady on when the board is on. It will also
be used to indicate the reset switch has been pressed and will light up only when
the button is pressed. The other LEDs selected include blue and white LEDs, with
package size 1206, for the application part of the PCB. The white LEDs will light
up for the numbers application and the blue LEDs will light up with the cardinal
directions application. There will also be extra LEDs available for troubleshooting
and other possible purposes.

5.2.4.6 RESET Button
A pull up resistor is very useful in order to assign specific voltages to pins when
they aren’t being utilized. This keeps the value from just being empty or floating
signal which could cause the program to register it incorrectly. Pull up resistors are
utilized on the JTAG-SMT2 GPIO pins to keep the signal on those pins from floating
when they aren’t active. A pull up resistor is also used for correct function of a reset
switch. A reset switch will be included in our design in order to manually reset the
FPGA. The FPGA registers the reset pin as an active high pin. This means that
when the pin receives logic high input (1) = “on” and when logic low input (0) = “off”.
This is necessary to figure out because it is the reason for having a pull up resistor.

Figure 56: Reset Button Open with Pull-Up Resistor

Figure 56 shows the pull-up resistor, FPGA reset pin and the momentary reset
button sharing a node before the circuit goes to the ground. Below is the evaluation
of both states of the button.

No Reset:

Figure 57: Reset Switch Open Circuit

94

In Figure 57 switch is open so there is no current running to ground which must
mean that there is no current flowing through the resistor. Since there is no current
flowing through the resistor there is no voltage drop across it. Which in turn sends
the whole voltage supply of 3.3V to the reset pin on the FPGA. Since the pin is
active high, mentioned earlier, the FPGA interprets this value as being “on” and
to continue its processes. The high value keeps the FPGA from being reset. It
is counter-intuitive to any regular switch, like a light switch, when it is not being
pressed no voltage is being supplied to the circuit. This is the opposite, when the
button is not pressed the FPGA pin is being supplied a voltage.

Reset:

Figure 58: Reset Switch Closed Circuit

In Figure 58 when the switch is closed, a path for the current is created to the
ground. Since there is now a ground, current flows from the voltage supply through
the resistor, through the switch and to ground. This is the path of least resistance.
Current will always take the shortest path it can to reach ground. For this reason,
no current goes into the FPGA pin. Due to the lack of current to the FPGA pin no
voltage drops across the line and then there is no voltage into the FPGA reset pin.
Therefore, the FPGA reset pin receives no voltage or current input and interprets
this value as being “off”. After the FPGA reads an “off” from the pin it successfully
resets the FPGA.

Figure 59: Reset Button Component Specification Comparisons for Part Selec-
tion

Table 59, above compares three different tactile switches, from distributor Digikey,
that act like momentary pushbutton switches. Momentary means that the switch
only creates a contact while it is being pressed, which is represented as Off-Mom

95

as the switch function type when searching Digikey. This Off-Mom shorthand name
stands for, Off continuous – On momentary. Any switches that are anything other
than Off-Mom connection type cannot be considered for the reset button applica-
tion. All the buttons analyzed above are Off-Mon buttons which is the only thing
they have in common. Button 1 is a through hole button which is unnecessary,
more expensive and takes up more room so it is not the right choice. Button 2 is
a surface mount type, which is desired, but it has a J Lead termination style. This
means that the leads off of the SMD part turn up, and this is not the style desired.
Button 3 is a surface mount part, has gull wing termination style leads and is small
and compact in size. The gull wing termination style looks like little support feet off
of the SMD part that will match up perfectly with the pads on the PCB.

5.2.4.7 Resistor Network
The LEDs in the PCB need current limiting resistors. Some of the LEDs are for
the applications of the PCB, twenty, and then some are extra for assisting in trou-
bleshooting any issues. Since there are so many LEDs it would save space and be
more efficient to select a resistor network. It would also save time during assem-
bly when inserting a resistor network instead of one resistor at a time. A resistor
network is single component that is made up of a combination of several resistors.
There are three main different types of resistor networks, isolated resistors, bussed
resistors and dual terminator. For our application, as current limiting resistors, iso-
lated resistor networks are chosen. This means the resistors are independent of
one another, as seen in Figure 61 below, and are not connected at any point within
the resistor network component.

Figure 60: Resistor Network Internal Schematic

There are many different characteristics of resistor networks besides the arrange-
ment of the resistors within the network. The different characteristics include num-
ber of elements, resistance, tolerance, maximum working voltage, power dissipa-
tion, and size code. All of these characteristics will be specified before selecting

96

a resistor network, which will narrow down the possible options to a reasonable
number to choose from.

The number of elements within a resistor network can range from 2 to more than
30. For this project a resistor network with 8 elements or resistors was chosen.
This choice was made because there are 24 LEDs within the application section
of the PCB that are all related in conveying the success of the project. These
LEDs will all be connected to three 8 element resistor networks. In case one of
the resistor networks breaks, there are still two other working resistor networks that
can be used for the application. For the application, 14 LEDs are required to work,
so if one of the resistor networks fail, there are still two others working with 16
LEDs. We decided having one failsafe was enough and therefor selected an eight
element resistor network. Also, eight element resistor networks are more common
than seven element resistor networks which would allow for more options to choose
from and 10 element resistor networks was more than what was needed.

The resistance of the resistor networks depends on the maximum supply current
into the LEDs and the required forward voltage for the LEDs to turn on. The formula
for finding the required resistance is Ohm’s Law:

V = IR

To use the formula for the application LEDs selected the forward voltage needs to
be known. In Figure 72 on page 130 the Bill of Materials, the blue and white LEDs
description lists the maximum current and forward voltage specifications. The blue
and white LEDs are the chosen application LEDs and they both require a maximum
current of 20mA for maximum brightness. The maximum current level is the same
for both making one aspect of choosing the required resistance simpler. The blue
LEDs require a forward voltage of 3.3V. The white LEDs require a forward voltage
of 3.2V. Since forward voltage required for the LEDs are similar but not exactly the
same some decisions need to be made before calculating the resistance required
to limit the current. The forward voltage is similar which means the same resistor
value can be used for both. In order to select a resistor value to work for both a
single forward voltage value must be chosen for the calculations. The value of 3.2V
will be used for the calculations. The KVL equations were explained in previous
sections. The selected voltage supply is 5V and 3.2V drops across the LED, then
1.8V needs to drop across the resistor. Since the maximum current is set at 20mA,
ohms law, seen above, can be used to find the value of the resistor.

R = V /I

= 1.800V /0.020A

= 90Ω

The resistor value is found to be 90 Ohm, which is not an available value. From
the available choices 100 Ohms was selected. The detailed reasoning for round-

97

ing up to a higher resistor value is found in the previously mentioned section. To
summarize, increasing the resistor value simply decreases the current value due to
resistance and current being inversely proportional. This is preferred because the
maximum current allowable through the LEDs is 20mA, and a larger resistor value
would decrease the current passing through the LEDs.

I = V /R

= 1.800V /100Ω

= 0.018A

From equations above the current through the white LED is 18mA which is an ap-
propriate value. The current limiting reasoning is why 3.2V was selected for the
calculations of the resistor value for both LED colors. When 5V is supplied to the
blue LED with a forward voltage of 3.3V, 3.3V will drop across the LED, which
leaves 1.7V to be dropped across the resistor.

Using Ohm’s Law, equation the resulting resistance value is 85 ohms in order to
limit the current passing thought the resistor and blue LEDs to 20mA. The 100
Ohm resistor value is a good choice for the 3.3V forward voltage LED for the same
reason it was for the 3.2V forward voltage LED calculations. The only difference
is the current will be limited more because the available voltage drop across the
resistor is lower. Using Ohm’s Law, the current through the blue LED can be found.

I = V /R

I = 1.7V /100Ω

I = 17mA

According to the equations above, the current through the resistor and blue LED
is limited to 17mA. This decrease in current would only effect the brightness of the
blue LED by a slight amount and is acceptable for use.

The tolerance level is the percent error of the resistor value. For example, a resistor
of 100 ohms with a tolerance of +- 5% means the resistor could actually have a
value in the range of 95 to 105 ohms. The tolerance of the resistor network does
not need to be hyper specific. A tolerance of +- 5% or lower is adequate for the
chosen resistor value of 100 ohms. Since the resistor value could range from 95
or 105 ohm the current would be limited to a range of 18.94 mA to 17.14 mA for
the 3.2V white LEDs and a current range of 17.89mA to 16.19mA for the 3.3V blue
LEDs. The ranges of current values are adequate to light the LEDs sufficiently.

The power dissipation per element is another specification of a resistor network. To
select the minimum power dissipation allowable, the power dissipation must first be

98

found using the equation below. Since the power dissipation is a maximum value,
the maximum power dissipation must be found with our selected resistor value
and corresponding current ranges. To find the maximum power dissipation, Pmax,
maximum values of voltage and current through the resistor will be used. Vmax
is the maximum voltage drop across one of the resistor elements. Found above,
the maximum voltage drop, Vmax, is 1.8V when the resistor element is paired with
the 3.2V white LED. The maximum current limit, Imax, from this 1.8V voltage drop
across the resistor element is 18.94 mA, which was calculated in

Pmax = Vmax · Imax

= 1.800V · 18.940mA

= 34.090mW

The maximum power dissipation was found to be 34.09mW. Therefore, the power
dissipation value specification can be any value above 60 mW. The reason for
choosing 60mW even though the calculated maximum was 34.09mW is to give an
adequate buffer, double, between the calculated maximum and the specified maxi-
mum. This is precautionary just to absolutely prevent any damage from surpassing
the power dissipation specification. The size code specification is not something
that is needed to be determined before looking at available parts. The reason be-
ing is that there will be more available options without being specific. Although
one thing can be specified about the part itself that would go hand in hand with
the size, which is the mounting type. Our goal is for our designed PCB to be as
small as possible and as cheap as possible. Choosing a surface mount resistor
array allows the part to be smaller and cheaper than creating through holes on the
board. Having specified a surface mount requirement is another step in finding the
desired resistor network. After all these requirements desired have been specified
choosing the resistor network was the next step. In Table 61 below, three different
resistors found on distributor, Digikey’s website, are compared and one of them
was ultimately selected.

Figure 61: Resistor Network Component Specification Comparisons for Part Se-
lection

99

These three resistor networks, Figure 61, all have eight elements within them and
the same tolerance but they are also very different from each other. Even though
R1 has a power dissipation per element level higher than what we need, it is a
through hole mounted part and has a resistance value of 1,000 ohms which are
not within the specifications desired. The R2 option is completely different from the
specifications, most importantly it is a bussed resistor network. Which means the
resistors are connected to one another, unlike the isolated resistor network. Like
previously mentioned, in an isolated resistor network the resistors within are not
wired to each other in any way and this is what we specified. This is why R3 is the
perfect choice. It meets all of the specifications made for a resistor network that
would function as desired within the circuit.

5.2.4.7.1 Current Limiting Resistors
Forward voltage is the voltage required across the diode to turn it on. For example,
the first set of LEDs we will order have a forward voltage of 3.3V. The chosen supply
voltage is set to 5V. To ensure the brightness of the LED the current available for
the LED to draw needs to be a maximum of 20mA. This maximum current draw is
found on the LED datasheet. Now all that is left is to determine the current limiting
resistor’s value. If we want the LED to be as bright as possible then it is simple.
Ohm’s Law and Kirchhoff voltage law (KVL) will be used to determine and compare
the value. First use KVL starting with the voltage source and ending at the ground.
given values: Supply Voltage = 5V, V_f = 3.3V and I_Dmax = 20mA.

−Vs + Vf + (R× IDmax) = 0 (29)

−5V + 3.3V + (R× 20mA) = 0

R = 5V –3.3V ÷ 20mA

R = 85Ω

Since this is not a real world manufactured resistor value I will round up to a larger
resistor. The resistor selected has a value of 100 ohms. The reason I am rounding
up to a larger resistor is because that will limit the current even more, the larger the
resistor the smaller the current will become. This is because the current limiting
resistor is causing the circuit to draw less current. This can be seen in the equations
below, usingOhm’s Law, the first with a small resistance and the second with a large
resistance in place.

Ohm’s Law V = voltage (Volts, V) I = current (Ampere, A) R = resistance (Ohm, Ω)

V = IR (30)

V= IR rearrange the terms I=V/R

100

Example 1: R = 100 Ω
I = (5V –3.3V)÷R

I = 1.7V ÷ 100Ω

I = 17mA

Example 2: R = 250 Ω

I = (5V –3.3V)÷R

I = 1.7V ÷ 200Ω

I = 8.5mA

As seen from the examples the current in Example 1 is 17mA, and in Example 2
the current is 8.5mA which is half of the current from Example 1. The resistor in
example 2 was twice as large and the resulting current from example 2 was half
as large as the values from example 1. So we have proved with Ohm’s law that
current and resistance are inversely proportional to each other. Which means if
one is increased the other decreases.

5.2.4.8 Power Supply
To supply the correct power supply to the PCB each component’s maximum voltage
needs to be noted. Whatever the highest level of voltage required is the minimum
amount that will need to be supplied to the PCB. From Table 62 the maximum
required voltage was found to be 3.3 V.

Figure 62: Component Supply Voltage and Maximum Current Specifications

There are a couple of different ways to supply voltage to the PCB, namely, AC to
DC power from a wall outlet and batteries. We decided to choose AC/DC power
from the outlet for a couple of reasons. First, having a steady stream of power is
extremely reliable, we won’t have to worry about replacing batteries or recharging
batteries. Also, we don’t want to deal with all the debugging and prototyping issues
that could arise when we don’t realize the batteries are dead. There are many
options for connecting the power to the board. There are cylindrical connectors,
snap and lock DC power connectors, Molex connector, Tamiya connectors, JST
RCY connector, and much more. A cylindrical connector or barrel jack was chosen
for our design due to its small size, high voltage and current limits. Even though
the board doesn’t need more supply voltage than that the maximum voltage the
lowest supply voltage available from an AC/DC barrel jack power supply is 12VDC.
One requirement would be the minimum output voltage requirement of the power
supply, which is 5V. Another requirement of the power supply is to have a maximum

101

current draw of at least twice as large as the calculated maximum current drawn
from the PCB components. This requires the power supply to have at least 500mA
maximum current draw. The power barrel connector jack, which will be soldered
onto the PCB and receive the barrel connector from the power supply will need to
meet the same requirements above.

Figure 63: Power Supply Adapter Specification Comparisons for Part Selection

In Table 63, there are three different power supplies compared from the distributor
Digikey. Power supply 1 meets all of the current and voltage requirements, but it
has a negative center power supply barrel jack output connector. This is incompat-
ible with the through hole mounted power barrel connector jack since its center is
positive. Power supply 2 meets the voltage and current output requirements but the
output connector is not the barrel jack connector. This is an important requirement
and therefor this power supply cannot be considered. Power supply 3 is the best
choice. It meets all of the previously stated requirements and has a positive center
polarity. The power supply output barrel jack connector has dimensions 2.1mm
inner diameter (ID) and 5.50mm outer diameter (OD) which means the connector
on the PCB must match dimensions for the connection to work. The through hole
mounting type was specified for the PCB jack connector because it can withstand
more mechanical stress that could be applied when repeatedly removing and con-
necting the power supply connector.

Figure 64: Power Barrel Connector Specification Comparisons for Part Selection

102

In Table 64, the power barrel connector jack, there are three different options com-
pared from the distributor, Digikey. Jack 1 meets the current and voltage require-
ments to match the power supply but it has different mating diameters which is not
compatible with the power supply output connector already selected. Jack 2 meets
the current and voltage requirements but has solder eyelets which is an undesired
through hole pin shape and difficult to replace. Jack 3 is the desired and chosen
through hole connector because it meets the current and voltage requirements as
well as having flat through hole pins for easy installation and removal.

5.2.4.9 Voltage Levels and Regulators
From the list, as seen below, of voltage supply levels of components requiring a
voltage source the voltage values can be determined. The voltage levels that are
required to be supplied to components are 3.3V and 1.2V. This information helps to
determine what kind of voltage regulator is needed based off of the desired voltage
levels themselves. Also the number of different values of voltage equals the number
of different voltage regulators The next section will explain in more detail the voltage
regulators that were chosen to meet these voltage levels.

• FPGA:

– VCCINT= 1.2V

– VCCAUX = 3.3V

– VCCO_0,1,2,3 = 3.3V

– VREF = 3.3V

• JTAG:

– VDD = 3.3V
– VREF = 3.3V

• SDRAM:

– VDD = 3.3 V
– VVDDQ = 3.3V

To decide on which voltage regulators to use requires the same type of research
from the initial power supply voltage amount decision and more information about
the current draw of each component. There is a voltage regulator for each level of
voltage required by each component. The current of all of the components added
together will be the maximum current draw from the power source through the volt-
age regulators. So a voltage regulator that will allow that much current to pass
through without overheating is the one we will be selecting.

103

Figure 65: Voltage Regulator Component Specification Comparisons for Part Se-
lection

Table 65 shows three very different voltage regulators, there are so many to choose
from and such different characteristics to specify. From the list of voltage charac-
teristics on page 5.2.4.9 there are two different voltage values which means two
different voltage regulators are required. As per the total current draw amount es-
tablished in Section 5.2.4.8 Power Supply on page 101, the total current output
minimum of 500mA. Above, Table 65 shows VR 1 and VR 3 with positive fixed reg-
ulator topology. This topology is the typical type for applications with simple supply
voltage requirements. Positive fixed topology means that the output voltage is pos-
itive voltage with respect to ground. Negative topology means the output voltage
is negative with respect to ground which cannot be attained by simply switching
the connections on the positive topology voltage regulator. VR 2 is a positive ad-
justable regulator topology which is useful but not necessary for our project since
we only need two set voltage supply levels. VR 1 has a current output that is 250mA
which does not meet the 500mA minimum current output requirement. That nar-
rows it down to VR 3 which has twice as much maximum current output as the
minimum requirement at 1A. This voltage regulator was selected for converting the
12V power supply to 3.3V. A second voltage regulator was selected to convert 3.3V
to 1.2V.

5.3 Software
The aspects of software design in the project encompass acquiring a dataset, pre-
processing, and classification, all within an intuitive GUI. In the sections below, we
outline howwe curated our dataset, the preprocessing that we do, the classification,
and the GUI. In general, the storage, preprocessing, and GUI are implemented on
the Raspberry Pi and the classification is implemented on the FPGA.

104

5.3.1 Speech Recognition
5.3.1.1 Algorithm Choice
Among the classification algorithms that are commonly used in speech recogni-
tion, we chose to go with a feedforward deep neural network (DNN). The primary
reason that we chose this algorithm over the others was its computational com-
plexity. HMMs are complex, statistical models that take a significant amount of
time to understand and implement. CNNs, on the other hand, are simply too costly
to implement on low-cost hardware. DNNs are simple to implement on low-level
hardware and the network can be designed to be small enough to run effectively
on our low-cost FPGA. Overall, our choice is optimal for maximizing performance
and ease of implementation.

5.3.1.2 Dataset & Preprocessing
The preprocessing stage is essential in order to get our inputs in the ideal format
for our classifier. Just as the semantics of natural language can be finicky, so can
comparing speech signals: even from the same individual. Speech signals will be
initially sampled via a microphone at 16,000 Hz and stored in a WAV file. We chose
our sampling rate based on the fact that 16,000 Hz captures all of the details we
might want about a particular utterance, while avoiding the extra computations that
would come with oversampling (i.e., having more samples per signal). The WAV
format was a natural choice for us as it is an uncompressed file format for audio
signals.

Our dataset currently consists of six people’s speech sets. Each speech set con-
tain five more subsets, where each subset represents that individual saying every
word in our vocabulary once. The data is collected using the sampling rate and
file format mentioned above. We are always expanding the dataset to increase the
generalizability of our classifier.

To account for any noise that occurs during initialization, we scan through the
speech signal and look for the first sample that is greater than or equal to approxi-
mately 40% of the maximum value of the absolute value of the signal. We set this
point as the starting point and take the next 6999 samples per signal. This heuristic
is necessary in order to achieve a simple, automatic preprocessing routine that can
grant us good classification results during testing.

Once we have trimmed our raw signals to 7000 samples, we partition each signal
into a collection of frames and compute the MFCCs for each frame. For compat-
ibility with our classifier, we scaled the MFCCs so that they fit between -1 and 1,
divided by 2, and then shifted by half so that our feature vector lies between 0 and
1. This reduces the chances of the DNN having saturated inputs into any of the hid-
den or output nodes, which are detrimental for learning. Finally, this values within
this feature vector are approximated to their closest 8-bit fixed point representation.

105

5.3.1.3 Classifier
As mentioned previously, our speech classifier is a feedforward DNN tasked with
classifying a vocabulary of 14 words. The vocabulary consists of the numbers
0-9 and the cardinal directions: east, north, south, and west. There are several
other powerful choices that are often employed in speech recognition systems,
such as hiddenMarkovmodels (HMM) and recurrent neural networks (RNN). These
algorithms tend to be quite sophisticated in terms of implementation and require
computational resources that we do not have with our hardware. Consequently,
we chose to go with a feedforward DNN for our application.

The network has 516 nodes at the input layer (to resemble the size of our feature
vector), 100 nodes at the first hidden layer, 50 nodes at the second hidden layer,
and 14 nodes at the output layer (to resemble the size of our vocabulary). For train-
ing, the network uses the sigmoid function as the activation function and gradient
descent with weights initialized from sampling a normal distribution with parame-
ters dependent on the number of hidden layers in the network. The network does
not currently have a regularization term.

In desktop and laptop processors, floating-point precision is rarely a concern. Be-
cause we plan to implement this network in a low-cost FPGA, we are limited by the
amount of block memory and, hence, are restricted in the amount of precision we
can utilize. Our nodes will be unsigned and encoded using 8 bits and our weights
will be signed and encoded using four bits. The sigmoid function will also have to
be approximated by using a combinational approximation. Figure 2 demonstrates
the tight fit that the combinational approximation has with the standard sigmoid
function. Empirical tests show that the error induced by the approximation is min-
imal: significantly less than 1%. Our learning algorithm (i.e., gradient descent) is
unaffected since the training will be off-loaded to the Raspberry Pi.

With an understanding of the preprocessing steps and the speech classifier, we can
now take a bird’s eye view of the classification process. We will split up our discus-
sion into a training phase and a testing phase, according to where each phase is
processed.

During the training phase, we perform all of our computations on the Raspberry Pi.
We first preprocess all of the raw signals in our dataset. This includes trimming,
framing, and computing the MFCC feature vector for every signal. We then instan-
tiate an instance of the DNN to initialize the weights, set the learning rate, and set
the number of epochs to iterate through. Iterating through the training set multiple
time via epoch iteration is useful for “generating” additional training data for the net-
work to learn from. Though this can cause the network to overfit the training data,
we have tested that 100 epochs are generally sufficient to obtain the classification
results we want (greater than 80%) without overfitting.

During the testing phase, we move our computations over to the FPGA. First, we
approximate the weights generated on the Raspberry Pi to values that fall within
the precision available with four bits. These weights are then exported to a text

106

file, converted to an appropriate format for the FPGA to read, and then sent to the
FPGA via serial peripheral interface (SPI). At this point, the system switches to
testing mode. Any speech signals that are recorded from the mic are converted
to an appropriate format for the FPGA on the Raspberry Pi and then sent over for
processing. The FPGA will then communicate back to the Raspberry Pi with the
classification results.

5.3.2 Graphical User Interface Design
The user will be able to interact with the speech processing system through a graph-
ical user interface that can run on a computer.

5.3.2.1 Functional Requirements
• Counting Mode

– Allows user to set this mode to on/off
– When this mode is on, it allows the user to verify if spoken numbers are
recognized correctly or not

• Directions Mode

– Allows user to set this mode to on/off
– When this mode is on, it allows the user to verify if spoken cardinal di-
rections are recognized correctly or not

• Logging

– Allows user to keep data logs for future review

5.3.2.2 Block Diagram/State Machine
The following block diagram serves as a general guide for state machine of the
GUI. This will allow us to better understand the behaviors we expect the user to
take when interacting with our application.

We can use the state machine to ensure that the actual application successfully
allows for the event and state transitions as depicted here:

107

Figure 66: GUI State Machine Block Diagram

108

6 System Design Summaries
6.1 Hardware Design Summary
1. Preliminary schematic

2. Breadboard with Development board (test I/O pin selections for LEDs)

3. Final Schematic Rev0

4. Layout PCB Rev0

5. Order PCB Rev0

6. Place Parts PCB Rev0

7. Test PCB Rev0

8. Route 1: Rev0 works

(a) Order spare parts

9. Route 2: Rev0 needs modifications

(a) Preliminary Schematic Rev1
(b) Breadboard with PCB Rev0
(c) Final Schematic Rev2
(d) Layout PCB Rev1
(e) Order PCB Rev1
(f) Place Parts PCB Rev0
(g) Test PCB Rev1
(h) Route 1: Rev1 works

i. Order spare parts
(i) Route 3: Rev2 needs modifications

i. Repeat Route 2 for Rev2 until Route 1 is chosen

6.2 Software Design Summary
DeepGate will utilize one software entity that will encompass most of the user inter-
actions with the hardware. Although there are pre-existing tools that are compatible
with FPGAs, our goal is to be able to have a custom graphical user application that
would better suit our needs. This GUI would allow us to better test and maximize
our efficiency by allowing for multiple configurations. Our hope is that instead of
having to require continuous hardware compilation, the finished GUI would feature
settings that the user can easily and quickly implement with just the click of a button.

109

While this is clearly something that is possible given the availability of software tools
offered by embedded hardware providers such as Xilinx and Diligent, there are a lot
of factors that need to be considered when designing an application that interfaces
with complex hardware. This section will go into further detail on how this can be
implemented.

6.2.1 Establishing Serial Communication
The FPGA we are looking to utilize is configured with a microcontroller. This mi-
crocontroller allows for the sending and receiving of serial data using the USB port
as well as analog to digital conversion of information such as voltages. The first
step is to ensure confirm the settings are appropriate for establishing serial port
communication over the USB and sampling analog information.

In addition, as covered in our research regarding serial port communication, we
can interface with the microcontroller by utilizing the SPI module. In this case, the
microcontroller is used as ameans to detect whether the FPGA has new information
which can be read or written. One of the best methods of handling this would be
through using the Memory Mapping Technique as described below.

6.2.2 Memory Mapping
The reading and writing to the SDRAM can be achieved through amemorymapping
technique. This is often utilized in the programming of microcontrollers and other
processors, particularly in instances where one needs to interface with inputs and
outputs from another device. It is also known as memory-mapped input/output.
Another related method for dealing with inputs and outputs between processors
and peripheral devices is port-mapped I/O. The advantages and disadvantages of
each of these methods will be further explored in the following.

The memory mapping technique is extremely common and useful. The memory
and input/output devices are addressed from the same address space. Each of the
registers and memory of the peripheral devices is associated with address values.
The advantage of this is that it allows the processor to access peripheral devices in
the same way it accesses its memory. Port-mapped input/output has the distinction
that the address space it references is isolated from the main memory.

Memory mapped I/O is well known for its utility in embedded systems and it fol-
lows the general principles of reduced instruction set architecture. Since the port-
mapped I/O includes the need for an isolated address space, it sacrifices some
simplicity. However, having that specialized bus offers the advantage of speedier
operations. Typically, peripheral devices are usually slower than main memory.
This is only worsened when the buses for the address and information are shared.
Memory mapped I/O, due to its lessened complexity, is inherently more efficient,
more compact, and speedier in other aspects.

In order to implement the memory mapping technique on a device that does not
permit direct mapping to the memory space, such as a microcontroller, we have to

110

consider other avenues of access. A viable option of doing this would be over a se-
rial port interface bus. A register interface over the SPI bus is a suitable alternative
to utilizing the ADC ports on the FPGA. In the software, we can then specify the
addresses that we need to use as well as configure the appropriate pins as inputs
or outputs of the FPGA.

By exploring the different types of methods in dealing with inputs and outputs with
peripheral devices, we learned that memory mapped I/O and port-mapped I/O
methods are both viable and effective techniques. With the ever increasing size
of processors in regards to computer architecture, the memory mapped I/O tech-
nique is a very popular choice. Any concerns with the range of memory address
space have been virtually eliminated. There is more than sufficient space for the
memory and peripheral devices. However, both methods are comparable in their
effectiveness in present times.

6.2.3 Interfacing via JTAG
Although the microcontroller is a strong option, we are also looking into interfacing
with the hardware through the JTAG and SDRAM chip as an alternative to the
microcontroller. This is due to the fact that working with both of the devices adds
complexity to debugging. By utilizing the JTAG as a port for serial communication,
the JTAG can record any input/output operation between the microcontroller and
the FPGA. The data, which is stored on the FPGA’s own memory resources can be
transferred easily to a personal computer.

Using a communication circuit that the vendor supplies with the JTAG, we can add
access to the data to the user. Using specific application programming interfaces
(API’s), the information can be interacted with by the user through a GUI.

Often, manufacturers of FPGAs do also provide APIs in TCL/TK or Tool Command
Language Tool Kit to allow interfacing between the JTAG and the personal com-
puter. These APIs can provide a basis for user logic and interactivity.

6.2.4 Receiving Algorithm Feedback
The neural network will output the particular word or phrase that it has the most
confidence that the user is saying. This information will be passed through the
graphical user interface logic and ultimately output as a status. There will be a set
of functions that will control this interfacing.

6.2.5 Speech Validation and Recognition
Aswe expect to have immediate output after speech input is achieved, we can verify
whether or not the output was accurate. We can also close this feedback loop by
providing user input that would confirm whether or not what they said turned out to
be the actual text. This can be simply implemented as two buttons marking “Yes”
if the output was as expected or “No” if it was not.

111

6.2.6 Status/Log Tracking
Keeping logs regarding the user interaction is extremely useful in our application.
However, it is not as important as the immediate output that is displayed on the
graphical user interface.

The purpose of the log tracking is to be able to save a downloadable file for our
records to review the output and feedback of previous sessions. We will strive to
achieve this as a text file that is either generated by a command or automatically
generated.

The possible difficulties in achieving this feature is dependent on how much we
would like to format this file. As the amount of processing for the log file increases,
so will the difficulty. For mostly our part we will work to ensure that a simple text file
of the session can be saved.

6.2.7 User Interface Design
User Interface Design is all about making the application as user-friendly as pos-
sible. The user is the center at which the design is focused on. It is important to
make sure that the user can navigate the application as efficiently as possible with
as little confusion.

To do this, it is important to use a consistent aesthetic across all the elements.
Keeping the user interface design simple also allows the design to not distract the
user from performing the intended functions.

Qualities like color and texturemust be used with a purpose and these can influence
what will the user direct their immediate attention to. Typography can also be used
to emphasize in the same way.

It is also important for the user interface to communicate feedback. This includes
any changes regarding the user interface as well as in state and errors.

In user interface design there are a variety of elements that can be included. The
input controls include include:

• Input Controls

– Text fields
– Checkboxes
– Buttons
– Radio Buttons
– Dropdown lists
– Toggle

These input controls are useful for anything requiring user input. Due to the fact
that we want to make the interaction as simple as possible. We will likely utilize
mostly buttons and perhaps a text field to take in a user name or add in a note.

112

• Navigational Components

– Slider
– Search
– Tabs
– Tags

As our graphical user interface will require the use of different modes, a tabbed or
grouping can be useful in directing the user’s attention.

• Informational Components

– Notifications
– Messages
– Modal Windows
– Icons
– Progress bars

Finally, we can utilize modal (also known as pop-up) windows to help the user
realize we are in a different session. This can be very useful for the user to start
a session in any of the two recognition modes and easily navigate back to the
default by exiting the modal window. The graphical user interface needs to be
designed with the user in mind. Understanding the user’s goals, what they like,
their preferences, and observing how they tend to react to different scenarios is
extremely important.

The difficulty in user interface design is that as the base of users increase, there are
an increasing amount of preferences and tastes to be taken into account. There-
fore it is important to focus on the most general commonalities of users and also
prioritize their tastes. In our project, we will first to strive to ensure all group mem-
bers can easily utilize our tool and then proceed to verify random users can also
reasonably navigate our graphical user interface.

We will strive to design our defaults to reduce frustration on the user. We will also
conduct multiple usability tests to ensure that this will be the case.

113

7 Project Prototype Construction
7.1 Part Selection and Acquisition
The parts selected for the custom PCB design for our system are listed in the Bill
of Materials Figure on page 130. The decision making behind each part selected is
detailed in Section 5.2 Hardware on page 78. All of the parts selected are in stock
and available for shipment immediately from Digikey which is an electronic parts
distributor. We will be ordering from them several times for initial parts and extras
if we find the need. Electronic parts shipments from Digikey follow all electronic
packaging standards to prevent static charge from damaging the parts.

7.2 PCB Vendor and Assembly
There are hundreds of custom PCB fabrication vendors to choose from. These
vendors are able to produce small numbers of custom PCB boards because they
are able to place more than one different design on the same board sheet for fab-
rication. This manufacturing method has allowed custom PCB designs to be made
very inexpensively.

Depending on the number of layers and the size of the PCB the cost changes. To
keep expenses down we will limit the size of the PCB layout as much as we can.

After looking at several fabrication companies, still leaving our options open to bet-
ter companies or deals, we have selected a preliminary vendor. Silver Circuits is
a PCB manufacturer that specializes in prototype and low volume PCB production
which is exactly what we need. The PCB prototypes start at $12.50 each and can
be up to 4 layers thick and a maximum board size of 8.4” x 5”. Their lead time is
8 working days for 4 layer boards so we will make sure we send our order out as
soon as possible to avoid delays in the prototype plan.

We will try to self-solder all components initially. If this proves to difficult or doesn’t
work, we will outsource our surface mount assembly parts to a pick and place ven-
dor. These vendors will use machines to place the surface mount parts onto the
board. We have initially selected the vendor Small Batch Assembly as our assem-
bly service. They will only place the surface mount parts, and then we can solder
the through hold parts ourselves when the boards arrive.

7.3 PCB Prototype Construction
The board has been designed using EagleCAD software. The design will be sent to
a company, once we decide between a couple, to create the PCB with only traces
and holes. Then we will either solder all of the components on ourselves or select
a pick and place company to do it for us. We will probably try to do it ourselves
first since the parts are relatively cheap and we can get multiple PCBs fabricated.
If that doesn’t work, then we will send the board and our parts to the pick and place
company we decide on. Once we finish or receive the board with all the parts on
it then we will be able to test the functionality of the PCB and verify that it works

114

properly according to the description in proper operations. Then proceed with the
PCB according to the PCB Prototype Testing Plan.

7.4 Facilities and Equipment
As students of the College of Engineering and Computer science we have access to
numerous labs on campus. There are different labs that can be helpful for different
aspects of our project. The facilities these labs are within are very student focused
and create a learning environment. The student focus helps us realize that other
people are there doing the same things we are doing and therefore we feel very
comfortable working near our peers. The learning environment places emphasis on
the student and their success. The professors and lab managers contribute greatly
to the support and help students receive within the labs. We will be spending a
great deal of our time within the Innovation lab. There are also other labs available
to us such as the machining lab and lots of computer labs. The computer labs
are extremely useful for research and designing with the team. There are printers
available and that is convenient when needing to print the design to bring to the
other lab as a reference.

The innovation lab has three large tables that are perfect for building projects on a
large scale. Above the table are outlets hanging which is so accessible and suited
for modern day engineering students. There are computer stations along one wall
which makes testing with programs and the project within reach inside the lab.
Above the computers are power supplies and various testing equipment for use
while running initial tests on a breadboard set up. Along the back wall are large
tool chests with a large inventory of helpful tools that come in handy when building.
On the last wall there are three soldering stations. These soldering stations are
amazingwith high quality soldering irons stations, direct movable lighting and solder
fume fans. These fans work to keep users from inhaling the fumes from soldering
by pulling the air away from the user. In the back part of the innovation lab there is
even more equipment that can be used on a first come first serve basis.

The machining lab will be valuable to us as we near the end of the project and have
finished testing the PCB. When the PCB works correctly we can put it inside of a
housing. We will be able to make our own design for the housing for the PCB based
foremost on the size of the PCB itself. Once we have the design for the housing
we can take it to the machining lab and they will be able to create it for us. When
it comes to that point in the project we can decide what material we want it to be
made out of which will force us to build it a certain way. We can choose to 3D print
the enclosure for the board which would be one of the cheapest options available.
It would be simple to design, cheap to make and simple to assemble. On the other
hand, using flat materials that need to be cut and fastened together would be time
consuming, expensive and difficult to assemble. Whatever we end up deciding for
our enclosure fabrication material we are comfortable knowing the labs will be able
to help create our desire.

During our breadboading and prototyping stages of the project we will be utilizing

115

the Innovation lab as much as possible. It is thoroughly equipped for us to success-
fully build and test our PCB. We will be able to utilize the soldering stations, tools
and assistance from anyone in the lab whenever we may need it. We have several
labs available to us conveniently located within one of our college’s buildings. They
are there just for us and we plan to take full advantage to all that they have to offer.

After the design phase, the company 4PCB was chosen to manufacture the custom
prototype design. They were able to make a single board for $66 for students. Then
after a week, the board was received along with the parts that were ordered from
Digikey, ARROW and Sparkfun. The parts where labeled with their location on the
board. The company QMS assembled all of the components onto the board in two
days. This was an incredible time and money saver for our team as it would have
taken two weeks and $250 with an outsourced company in the USA. It would have
taken four weeks if we had it assembled in China.

116

8 Project Development Board Testing
8.1 Hardware
8.1.1 Design
8.2 Breadboard Prototype
8.2.1 Breadboard Design
For preliminary testing of the hardware we used a development board with an FPGA
and LED components. For more information on the development board see Section
8.3.2 Prototype on page 123. A breadboard block diagram was drawn up as a
preliminary view to what the test set up would look like before the schematic was
made, seen below Figure 67. It is always a good idea to draw a block diagram
before the schematic to get a simplistic view of all the components involved, what
kind of power or data is transferred between them and an overall picture of the
design together.

Figure 67: Breadboard Block Diagram

117

The breadboard schematic is very simple, Figure 68 below. This is due to the
fact that it includes a preassembled development board with all of the necessary
peripherals to test the FPGA connections with the LEDs. The development board
used in testing is an Embedded Micro Mojo V3, which is explained in further detail
in Section 8.3.2 on page 123. The main goal of this project is for the FPGA to
implement a deep learning framework to identify speech patterns. Since the FPGA
is the main hardware focused component that was the priority in testing the FPGA
development board and not including some of the other peripheral components in
the breadboard test. The FPGA, JTAG and SDRAM do not come in through hole
mounted parts so it was impossible to breadboard all those components together.
The purpose of the breadboard test was to establish a proper function between the
FPGA and the LEDs, which is the most important part of the project. Since the
development board already included LEDs connected to the FPGA we used those
in the experiment and didn’t not see the need to add LEDs to the header pins to
test functionality.

Figure 68: Breadboard Schematic

118

8.2.2 Breadboard Testing
For preliminary breadboard testing of the design the EmbeddedMicro Mojo 3 FPGA
development board was used. This development board is explained in depth in
Section 8.3.2 on page 123. A simple program was written in order to test the con-
nections between the computer, FPGA and LEDs. The program was written to be
used with RealTerm, also explained in ??.
Connections to be tested:

• PC to Development Board USB

• USB to Microcontroller

• Microcontroller to FPGA

• FPGA to LEDs

8.2.3 Experimental Setup
Breadboard Setup:

• PC

• USB cable

• Embedded Micro Mojo V3 Development Board Containing:

– USB connector
– Microcontroller
– FPGA
– 8 LEDs
– Resistor Bank
– Reset Button
– Clock

119

Figure 69: RealTerm Development Board Testing Program

Figure 69 shows the interface of the testing program that communicates with the
development board from the PC. The status column on the bottom right shows
which LED pins are lit up at any given time during the test.

120

Figure 70: Breadboard Test Set Up

Seen in Figure 70 the USB from the computer is connected to the USB connector on
the Mojo V3 development board. The board uses a micro controller (smaller quad-
flat package chip on the left side of the board) to interface the USB signals with the
rest of the board’s functions, mainly the FPGA (the large chip in the middle). The
FPGA is connected to the microcontroller using specific pins established for that
use and the FPGA is programmed through those pins. The microcontroller has a
large amount of pins, many of them being general purpose I/O pins. Eight of these
I/O pins are connected to an isolated resistor network which is then connected to
eight LEDs. Each LED represents a different I/O pin connection.

Experimental Steps:

1. Write program to test LEDs

2. Download and Install RealTerm

3. Upload Program to JTAG

121

4. Connect Mojo V3 to PC with USB cable

5. Verify Board Startup, LED indicator light is steady on

6. Use RealTerm to run program on JTAG

7. Press PC number keys to test application LED function

8. Verify that with a number selection the proper application LED lights up

9. Repeat step 8 for adequate data

Results: The LEDs successfully lit up. This means that the main hardware piece,
the FPGA, can successfully send and receive information with all the other periph-
erals. This includes the computer via the microcontroller to USB connector. The
LEDs via general I/O pins. Since we are not using the microcontroller utilized in the
development board for the experiment there will be a slightly different PCB design
but the real test was to make sure the application side of the project could be imple-
mented with the FPGA and LEDs. The connection between the FPGA and LEDs
should be similar. One of the JTAG’s applications is testing an FPGA so that con-
nection should work fine. We could not test that due to the surface mount nature
of the FPGA and the JTAG.

8.3 Firmware Testing Environment
8.3.1 ModelSim
ModelSim is an HDL simulator developed byMentor Graphics. It is used to simulate
the behavior of our circuit before it is synthesized, routed, and placed on the FPGA.
Additionally, it has a full Verilog debug suite capable of decoding simulation direc-
tives and displaying visually the value of every signal in our design at every time
step in a defined interval. This is more commonly known as a waveform diagram.
ModelSim is an essential part of the testing environment, allowing us to inspect our
neural network and take note of discrepancies between actual and intended circuit
behavior before the FPGA is programmed. Debugging run-time errors is extremely
tedious and can sometimes be impossible without the use of dedicated simula-
tion tools. We take advantage of ModelSim by writing Verilog test benches that it
compiles and runs. These test benches place our design under test by emulating
the signals that would be sent into it post FPGA configuration. ModelSim verifies
that the output behavior of the unit matches the intended behavior outlined in the
testbench. If not, these test benches instruct ModelSim to output detailed error
messages to a console, aiding us in our efforts to ensure the correct functionality
of our circuit.

Furthermore, it has the advantage of being compatible with both Altera Quartus and
Xilinx ISE as it is completely vendor independent (it merely compiles Verilog code
that is compliant with the accepted standard). In this project, we use ModelSim-
Altera version 10.3d.

122

8.3.1.1 Main Testbench
As the design hierarchy became increasingly complex, the main test bench used in
simulations of our circuit grew in terms of design coverage and test vectors used. It
started out as a small piece of code intended to test the functionality of a single pro-
cessing unit and is now capable of driving and reading the ports of the high-level tile
pipeline architecture. This test bench simulates the input of data to the pipeline and
verifies that the classification results match pre-determined values. Furthermore,
it is capable of triggering certain events such as a pipeline reset, pipeline stop,
and PLL loss of lock. Behavior in every test case is automatically verified and er-
ror/status messages are output to the console for further review. Anytime a change
is made to the under lying unit-under-test (the pipeline), the test bench is compiled
and run in ModelSim to ensure functionality is maintained. If a discrepancy in be-
havior is logged, the test bench will note at what time-step it occurred. This time-
step can then be located in the ModelSim waveform viewer and the source of the
error can be determined by tracking data and control signals. Thus, using this test
bench in conjunction with ModelSim, we perform a comprehensive review of the
circuit before the Spartan-6 is configured to realize it.

8.3.2 Development Boards
FPGA development boards are used for prototyping both ASIC and FPGA based
designs before they are put into production. Moreover, they serve an educational
purpose, allowing those without the capital required to manufacture ASICs or their
own custom boards the ability to practice and learn digital hardware design.

8.3.2.1 Embedded Micro Mojo V3
For this project, wewill prototype our digital circuit on aMojo V3 FPGADevelopment
Board created by EmbeddedMicro. TheMojo has 84GPIO pins, several LEDs, and
an ATmega32U4 microcontroller that is used for programming the FPGA, amongst
other things. Most importantly, it sports a Xilinx Spartan-6 XC6SLX9 FPGA, the
same chip we will be implementing on our own printed circuit board. Due to this,
and the availability of extensions to the board such as the SDRAM shield we will go
into in the following section, the Mojo is an ideal board for prototyping our neural
network.

The presence of a Xilinx chip signifies that the compilation process and its corre-
sponding programming files can be generated using the Xilinx ISE software ecosys-
tem. Most development boards can be programmed directly using the vendor’s
software, however, because Embedded Micro used a microcontroller with an SPI
interface for configuration (avoiding the JTAG pins), we must program the board
using Embedded Micro’s proprietary Mojo Loader program. This does not affect
the development process in any major way. The only subtle difference is that ISE
must be instructed to generate .bin programming files.

A slight advantage of this development board is the presence of a flashmemory chip
that allows us to store our .bin programming files in non-volatile memory. When the

123

board is powered on, the microcontroller will automatically configure the Spartan-6
with the contents of the flash memory, bypassing the need for an external interface
at all. This could prove valuable during any demonstrations by not having us waste
time on logic configuration.

There are several differences between this development board and our final purpose-
built board. These are the speed grade of the FPGA, and the presence of application-
specific components on the PCB, not including a microcontroller and including ded-
icated SDRAM.

For our own design we will be using a Spartan-6 XC6SLX9 with a speed grade of
-3. This is faster than the -2 speed grade chip available on this board, allowing us
to more easily meet timing closure and pump data through the pipeline at a faster
rate. Otherwise, the entire compilation process is the same and the same .bin files
can be used to configure both chips. However, if ISE is notified of the speed grade
it can provide more accurate timing information. Additionally, we will not have a
microcontroller on our board, opting to use the space for a memory chip instead.

8.3.2.2 Embedded Micro SDRAM Shield
EmbeddedMicro offers several extensions to their main development board. These
include, but are not limited to, an LED visualizer shield, a camera shield, and a servo
controller shield. We will be using an SDRAM shield during our prototyping phase.
A shield is a separate PCB that connects to the main development board using the
breakout headers located on the periphery of the main PCB. These are similar to
the shields available to Arduino enthusiasts.

The SDRAMshield contains a 256Mbit SDRAMchip (part numberMT48LC32M8A2P-
7E: G) that helps us extend the size of our neural network considerably. The FPGA
only has a limited amount of block RAM, meaning neural network weights must be
stored off-chip when they are not being used. Extending our usable memory size
with this SDRAM means we can create a network almost an order of magnitude
larger.

Embedded Micro supplies the Verilog code for an FPGA-side memory controller
as well as the locations of the GPIO pins connected to the external memory chip,
allowing us to focus our work flow solely on the implementation of the neural net-
work. Furthermore, the Mojo provides almost the exact same environment our final
firmware will be operating in, thus checking for compatibility issues and analyzing
logic utilization metrics for our final production board can be done using the devel-
opment board.

8.3.3 RealTerm
RealTerm is an open-source serial communication program that allows us to com-
municate with the microcontroller on the Mojo development board. We use this
application while our GUI and custom serial library are being developed to facilitate
data transfer and storage. Using RealTerm, we can send both ASCII and binary

124

values over our computer’s serial port, giving usmaximum flexibility in terms of com-
mand and data instructions. The program can be instructed to output data stored
in text files, meaning data intended for the input layer of our neural network has to
be stored in plain-text. This is much simpler than the alternative, which would entail
manually sending individual values over the bus using a program like HyperTermi-
nal. Furthermore, RealTerm has the ability to capture FPGA output data and store
it in text files. This functionality is necessary to the verification of our network. On
a side note, RealTerm offers a wide range of serial baud rates which allow us to
maximize the speed of data transfer. This rate is currently limited by the AVR on
the development board, but this bottleneck should be removed with the introduction
of our custom board.

8.4 Software Testing Environment
In addition to the firmware, we will need to conduct tests on the high-level software;
specifically, on our CNN and GUI. Fortunately, we can perform much of high-level
testing without the FPGA, enabling us to work on the hardware, firmware, and soft-
ware in parallel. For the CNN, we will use Anaconda and Keras for prototype devel-
opment and testing–all in Python. Due to the limitations that the FPGA constrains
on the CNN, most of our development will take place using Anaconda. On the other
hand, our GUI will be developed and tested in Python using PyQt and Qt Creator.

8.4.1 Anaconda
Anaconda is a freemium open source distribution of the Python and R programming
languages for large-scale data processing, predictive analytics, and scientific com-
puting. We chose to use the Anaconda distribution because it comes pre-loaded
with the Spyder IDE andmany of the libraries that will be useful in developing Deep-
Gate at every step of the way, including NumPy and SciPy.

8.4.2 Qt Creator
Qt Creator is an IDE that is a WYSIWYG interface for developing GUIs. While Qt
supports multiple programming languages, we will primarily be using Python and
the PyQt Libraries to develop our GUI.

8.5 Software-Specific Testing
In order to ensure that our software works correctly, we have devised several testing
protocols that we will employ during development. In particular, these protocols
test the speech recognition capability of our CNN, as well as the functionality of the
GUI that we have developed. In general, we would like to classify two categories of
speech–the numbers 0-9 and the cardinal directions: north, south, east, and west.
The next several sections list and describe the steps in these protocols with greater
detail.

125

8.5.1 Integer Recognition
First, we will look into the capability of our CNN to recognize the integers 0-9. We
will test to see if the system successfully recognizes these integers by the following
test plan:

1. Configure the speech preprocessing settings on the GUI to either raw, power,
or MFCC.

2. Verify that the FPGA is properly communicating with the computer.

3. Verify that the microphone is actively listening.

4. Say a number between 0-9.

5. Check confirmation of input by the illumination of the LED on the PCB and
the GUI.

6. Verify that the number is as stated.

The system should also output a percentage of confidence in the recognized num-
ber.

8.5.2 Cardinal Direction Recognition
The next aspect of DeepGate that we will test is its ability to classify the cardinal di-
rections: north, south, east, and west. We will test to see if the system successfully
recognizes cardinal directions by the following test plan:

1. Configure the appropriate settings.

2. Verify that the microphone is listening

3. Say North, south, east or west

4. Check confirmation of input

5. Verify if the output is as expected.

The system should also output a percentage of confidence in the recognized direc-
tion.

8.5.3 Status Logging
We will test to see if the system successfully records information from the session:

1. Configure the appropriate settings.

2. Verify that the microphone is listening

3. Operate Cardinal Direction Recognition Mode

4. Verify outputs from the GUI and check if a local text file is saved.

5. Repeat for Integer Recognition Mode

126

8.5.4 User-Friendliness
Our targeted user would be the team and a person that is able to use a tablet or
personal computer with relative ease. In this case, the user would be at least 18
years of age with the basic understanding of the software from reading a given
tutorial.

If time permits, the graphical user interface would be easily understandable even
without a tutorial and designed with the principles of human centered design.

1. Verify that the hardware is connected to the PC

2. Navigate to the executable for the GUI

3. Run the GUI

4. Ask the user to navigate to the tutorial or any help pages

(a) Verify that they can complete this task

5. Prompt the user to test if the microphone is listening

(a) Verify they can complete this task

6. Prompt the user to run the Integer Recognition mode

(a) Note if the user can easily navigate to the Modes group
(b) Note if they select the Integer Recognition Mode
(c) Note if they start speaking integers
(d) Note the responsiveness of the application

7. Prompt the user to exit the Integer Recognition Mode

(a) Verify if this task can be easily completed

8. Prompt the user to run the Cardinal Direction Recognition mode

(a) Note if the user can easily navigate to the Modes group
(b) Note if they select the Cardinal Direction Mode
(c) Note if they start speaking cardinal directions
(d) Note the responsiveness of the application

9. Prompt the user to exit the Cardinal Direction Recognition mode

(a) Verify they return to the original screen

10. Perform these user experience tests for at least five unique users.

(a) Note any failures and successes.
(b) Note any reactions or questions they have.

127

9 Administrative Content
9.1 Time Management
The largest challenge to this project is the hard deadline for completion. We only
have 7 months to complete this project. We will need to work a lot on our own
and keep up with our own share of the workload in order to finish the project with a
promising deliverable. Efficiently scheduling our time and carefully planning project
steps will help us succeed. The focus of the different components of this project
will be split up between the four team members. Each having a set number of
responsibilities. This also requires that everyone has their own part to work on
which fosters learning and team work to get the project done.

Figure 71: Application Responsibility Breakdown Diagram

9.2 Finances
9.2.1 Overview
We will need to purchase two major components at the least. Each of these com-
ponents can be very expensive. We plan on applying for multiple project sponsors
in order to reach our fund-raising goal and be able to purchase all the necessary
parts.

128

9.2.2 Budget

Budget Breakdown
Part Price
Manufacturing Service $150

Data $200

Document Printing $80

9.2.2.1 PCB Bill of Materials
The list of parts determined for the custom PCB are listed in Figure 72 below. Each
item has information listed about it such as description and quantity per board. The
multiplier is an estimation of how many extra boards or parts we will want to order
initially for PCB design Rev0. The Bill of materials includes the prices of each item
so that budgeting decisions can be made. It also has the part numbers of each
component so that they can be found on the distributor’s website, Digikey, for ease
of ordering.

129

Figure 72: Bill of Materials for PCB Prototype Rev0

9.2.2.2 Total Budget Breakdown

Figure 73: Costs Summary

130

9.2.3 Sponsor
SoarTech has graciously chosen our team to sponsor and generously provided us
with 1000 dollars. Their financial backing expanded our potential range of FPGA
options and gave us some leeway when it came to our PCB size. Despite this, we
decided to go with a low-cost, medium range chip to avoid going “bankrupt” should
our PCB not work as planned after the first manufacturing run.

We haven’t developed a PCB schematic yet, which is why some of our parts still
have ambiguous pricing. For example, the manufacturing cost greatly depends on
the number of layers in our design. We will have to wrestle with using smaller, less
expensive components while trying to maintain accurate speech recognition.

9.3 Team Composition
In order to maximize our success with our project. We have assigned each team
member with the responsibilities that would be most appropriate. This was done
with careful consideration of skill set, interests, experience, and also factored in the
intensity of the learning curve.

The responsibility of Project Team Lead was assigned to Cedric Orban who had the
skills and time necessary to take on the position. However, the whole team was
involved in communications with the sponsor, faculty, as well as checking in with
each other.

We breakdown the team’s primary responsibilities as follows

• Lindsay Davis

– PCB Design
– Hardware Interface

• Estella Gong

– User Interfaces
– Digital Communication
– Systems Integration and Testing

• Michael Lopez-Brau

– Pre-processing Algorithms
– Deep Learning

• Cedric Orban

– Team Project Lead
– FPGA Firmware Programming

131

9.4 Project Operation
To ensure that the correct firmware is loaded on to the FPGA, first connect a USB
2.0Micro-B type cable to the JTAG-SMT chip on the board. Then, using either Xilinx
ISE or Diligent’s Adept software package, upload the DeepGate programming file
to the board. After a short time (less than 30 seconds) the status LED on the board
will blink five times with a half-second period to notify the user that the FPGA is
operational.

9.4.1 GUI Operation

Figure 74: Graphical User Interface

The graphical user interface can be operated in the following manner:

• User

132

Figure 75: View Status

– User views status updates and can make notes via the edit box.

Figure 76: Input Controls

– User presses record. After a few seconds, the user will clearly state a
number from 1-9 or north, south, east, west.

– The resulting wav file can be played back using the playback button and
selecting the respective file.

133

Figure 77: Neural Network Controls

– User may verify the deep learning of the neural network by selecting
development mode. This set is not necessary during the demo.

– User selects initialize to create instance of neural network and complete
preprocessing

– The user may select train or test to either train or test the neural network
but in the demo this is no longer necessary.

Figure 78: FPGA Controls

– Once the user has recorded speech and selected initialize, the user
clicks on the Program FPGA button. This only needs to be done once
per session. A session is defined as the powering up of the hardware.

134

Figure 79: Save Status/Logging

– User presses ”Save Status” to save all current status updates to a text
file and clears the edit box.

Figure 80: Accuracy Meter

– User can view the recognized word and the performance percentage.

135

Figure 81: Edit Parameters

– User can edit various parameters for the neural network.

• GUI Controller

– Send speech data or other user input to the Raspberry Pi which commu-
nicates with the FPGA chip over SPI

– Waits for the processing to finish
– Receives feedback from the FPGA
– Displays result to the user

9.5 Milestones
The milestones were developed for our project as we decided the range of require-
ments we were going to have. Considering that at least half of our team will be
completely new to key components of our project – FPGA and Neural Networks,
we have allotted more time for the extensive research that is needed for our team
members to succeed.

The Milestone Chart will be routinely updated as we start creating our prototypes.

136

Figure 82: Milestones

137

10 Project Summary
To date, the team has been working diligently on each thrust of the project. On the
hardware side, the components and our distributors have been selected and the
PCB design has begun. On the software side, we have been testing various ANN
and CNN configurations

10.1 Project Design Discussion
A Post-Mortem Analysis is conducted to reflect upon the work of this past semester.
In this section we will review the roadblocks and challenges that we encountered.
While these challenges also include the technical, we will also reflect on the admin-
istrative as well.

10.2 Technical and Administrative Challenges
The challenges we faced were largely due to inexperience. Therefore, it was very
important for us to ensure that we plan for more research time. Two of our mem-
bers had prior experience with FPGAs and neural networks. In order for the other
members to ensure that we were all on the same page, understanding and empa-
thy is key. We strive to be very open in sharing our knowledge and resources. It is
also understood that it is the individual’s responsibility to gain the information they
needed.

10.3 Project Scheduling Update
We attempted to stick with our proposed milestone scheduling. However, as chal-
lenges arose during the semester it is clear that expected adjustments needed to be
made. The table below delineates our milestone dates for our current semester’s
objectives.

138

Figure 83: Senior Design 1 Final Schedule

The Table: Senior Design II Proposed Schedule shows our adjusted proposed time-
line for our Implementation Phase, Integration and Testing Phase, and Refinement
Phase.

139

Figure 84: Senior Design 2 Proposed Schedule

10.4 Best Practices
Ideally for next semester, we want to ensure that meetings are more regular, in-
cluding one-one-one check ins. We will also continuously update Dr. Lei Wei and
sponsors on a weekly to bi-weekly basis to ensure that all anticipated roadblocks
are resolved as quickly and efficiently as possible.

140

Currently our main method of contact is through Slack. Slack is a messaging app
for teams that was very effective for our needs. We also communicate with each
other by phone and email if necessary. To organize all our documents, we share a
Google Drive folder. This folder contains our ideas, and different files, images, and
resources that we can share.

Our team has chosen to write our report and related through Overleaf. Overleaf is
a real-time collaborative writing and publishing platform. It is primarily known as a
platform for scientific writing. Overleaf utilizes the LaTeX typesetting system. It is
primarily used for scientific communication and publication. These qualities make
it ideal for our purposes.

141

A Copyright Permissions
Material in the Public Domain
Figure Page Citation
3 11 Wikipedia. Retrieved November 10, 2016, from

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

7 16 Wikipedia. Retrieved November 10, 2016, from
https://en.wikipedia.org/wiki/Logic_Block

18 34 Wikipedia. Retrieved November 12, 2016, from
https://en.wikipedia.org/

32 53 DeepLearning. Retrieved December 6, 2016, from
http://deeplearning.net/tutorial/lenet.html

Material Available Under Miscellaneous Licenses
Figure Page License Citation
10 19 GFDL Wikipedia. Retrieved

November 10, 2016, from
https://en.wikipedia.org/wiki/Logic_block

14 24 CC Stratus Engineering Retrieved
November 15, 2016, from
https://www.stratusengineering.com/rs232-
9-pin-pinout/

15 26 CC 3.0 maxEmbedded Retrieved November 15,
2016, from http://maxembedded.com/

Figure 4 on page 12 has permission for inclusion in this document per the following
email exchange.

142

Figure 13 on page 23 is granted permission for inclusion in this document per the
following exchange.

Figure 8 on page 17 is permitted in this document per the following legal notice
found at https://www.altera.com/about/legal.html.

143

Figures 5 on page 13 and 6 on page 14 have permission pending for inclusion in
this document. Proof of a permission request is found below.

144

Figure 16 on page 30 is granted permission for inclusion in this document per the fol-
lowing exchange. It is sourced from: https://embeddedmicro.com/tutorials/mojo/sdram

145

Figure 52, 53, and 54 on page 89 and 91, is pending permission for inclusion in this
document per the following exchange.

Figure 27 on page 45 is pending permission for inclusion in this document per the
following exchange.

146

Figure 31 on page 50 is pending permission for inclusion in this document per the
following exchange.

Figure 29 and Figure 33 on page 48 and page 53, respectively, have been approved
for inclusion in this document per the following exchange.

147

148

B References
[1] Axelson, J. (2007). Serial port complete: COM ports, USB virtual COM ports,

and ports for embedded systems. Madison, WI: Lakeview Research.

[2] Beginning Electronics. (n.d.). Retrieved November 15, 2016, from https://em-
beddedmicro.com/tutorials/beginning-electronics

[3] Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models.
ieee assp magazine, 3(1), 4-16.

[4] Caulfield, A. M., Chung., E. S., & Putnam, A. (2016, October). A Cloud-Scale
Acceleration Architecture. RetrievedNovember 26, 2016, from https://www.m-
icrosoft.com/en-us/research/wp-content/uploads/2016/10/Cloud-Scale-Accel-
eration-Architecture.pdf.

[5] I2C Info – I2C Bus, Interface and Protocol. (n.d.). Retrieved November 24,
2016, from http://i2c.info/

[6] Linn, A. (2016). The moonshot that succeeded: How Bing and Azure are us-
ing an AI supercomputer in the cloud - Next at Microsoft. Retrieved November
06, 2016, from http://blogs.microsoft.com/next/2016/10/17/the_moonshot_-
that_succeeded/

[7] Project Catapult - Microsoft Research. (n.d.). Retrieved November 10, 2016,
from https://www.microsoft.com/en-us/research/project/project-catapult/

[8] Where FPGAs are fun. (n.d.). Retrieved November 05, 2016, from http://fpga-
4fun.com/

[9] Park, J., & Sung, W. (2016). FPGA based implementation of deep neu-
ral networks using on-chip memory only. 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/-
icassp.2016.7471828

[10] Collobert, R., Puhrsch, C., & Synnaeve, G. (2016). Wav2Letter: an End-to-
End ConvNet-based Speech Recognition System. arXiv preprint arXiv:1609.-
03193.

[11] Tommiska, M. (2003). Efficient digital implementation of the sigmoid function
for reprogrammable logic. IEE Proceedings - Computers and Digital Tech-
niques, 150(6), 403. doi:10.1049/ip-cdt:20030965

[12] Moerland, P. D., & Fiesler, E. (n.d.). Neural network adaptations to hardware
implementations. Handbook of Neural Computation. doi:10.1887-/07503031-
23/b365c78

149

[13] Anwar, S., Hwang, K., & Sung, W. (2015). Fixed point optimization of deep
convolutional neural networks for object recognition. 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1-
109/icassp.2015.7178146

[14] Harris, D. M., & Harris, S. L. (2007). Digital Design and Computer Architec-
ture. Amsterdam: Morgan Kaufmann.

[15] Spartan-6 Family Overview DS160 (v2.0) [Pdf]. (2011, October 25). Xilinx
Inc.

[16] Spartan-6 FPGA Packaging and Pinouts User Guide UG385 (v2.3). (2014,
May 12). Xilinx Inc.

[17] Spartan-6 FPGABlock RAMResources User GuideUG383 (v1.5) [Pdf]. (2011,
July 8). Xilinx Inc.

[18] Spartan-6 FPGAClocking Resources User GuideUG382 (v1.10) [Pdf]. (2015,
June 19). Xilinx Inc.

[19] ”How to Connect Speakers and Microphones to a Computer.” How to Connect
Speakers and Microphones to a Computer. N.p., n.d. Web. 06 Dec. 2016.

[20] Court, 1300Henley, Wa 99163 Pullman, 509.334.6306, andwww.digilentinc.c-
om. JTAG-SMTTM Programming Module for Xilinx ® FPGAs (n.d.): n. pag.
Web.

[21] D-sub 9Connector Pinout. (n.d.). RetrievedDecember 06, 2016, from http://w-
ww.db9-pinout.com/

[22] ”Xilinx Spartan-3 Specific Memory.” FPGA Prototyping by VHDL Examples
(n.d.): 243-56. Web.

[23] Xilinx, Inc. Xilinx UG393 Spartan-6 FPGA PCB Design Guide (n.d.): n. pag.
Web.

[24] Xilinx, Inc. Spartan-6 FPGA SelectIO Resources User Guide (UG381) (n.d.):
n. pag. Web.

150

